Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NUCLEAR PHYSICS

147988 Which one is correct about fission?

1 Approx. $0.1 \%$ mass converts into energy
2 Most of energy of fission is in the from of heat
3 In a fission of $\mathrm{U}^{235}$ about $200 \mathrm{eV}$ energy is released
4 On an average, one neutron is released per fission of $\mathrm{U}^{235}$
NUCLEAR PHYSICS

147956 The energy released per fission of a ${ }_{92} U^{235}$ nucleus is nearly-

1 $200 \mathrm{eV}$
2 $20 \mathrm{eV}$
3 $200 \mathrm{MeV}$
4 $2000 \mathrm{eV}$
NUCLEAR PHYSICS

147962 If the energy of a hydrogen atom in $\mathbf{n}^{\text {th }}$ orbit is $E_{n}$ then energy in the $n^{\text {th }}$ orbit of a singly ionized helium atom will be

1 $4 \mathrm{E}_{\mathrm{n}}$
2 $\mathrm{E}_{\mathrm{n}} / 2$
3 $2 \mathrm{E}_{\mathrm{n}}$
4 $250 \mathrm{~m} / \mathrm{s}$
NUCLEAR PHYSICS

147964 On bombarding $\mathrm{U}^{235}$ by slow neutron, $200 \mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be :

1 $5 \times 10^{22} / \mathrm{s}$
2 $5 \times 10^{16} / \mathrm{s}$
3 $8 \times 10^{16} / \mathrm{s}$
4 $20 \times 10^{16} / \mathrm{s}$
NUCLEAR PHYSICS

147988 Which one is correct about fission?

1 Approx. $0.1 \%$ mass converts into energy
2 Most of energy of fission is in the from of heat
3 In a fission of $\mathrm{U}^{235}$ about $200 \mathrm{eV}$ energy is released
4 On an average, one neutron is released per fission of $\mathrm{U}^{235}$
NUCLEAR PHYSICS

147956 The energy released per fission of a ${ }_{92} U^{235}$ nucleus is nearly-

1 $200 \mathrm{eV}$
2 $20 \mathrm{eV}$
3 $200 \mathrm{MeV}$
4 $2000 \mathrm{eV}$
NUCLEAR PHYSICS

147962 If the energy of a hydrogen atom in $\mathbf{n}^{\text {th }}$ orbit is $E_{n}$ then energy in the $n^{\text {th }}$ orbit of a singly ionized helium atom will be

1 $4 \mathrm{E}_{\mathrm{n}}$
2 $\mathrm{E}_{\mathrm{n}} / 2$
3 $2 \mathrm{E}_{\mathrm{n}}$
4 $250 \mathrm{~m} / \mathrm{s}$
NUCLEAR PHYSICS

147964 On bombarding $\mathrm{U}^{235}$ by slow neutron, $200 \mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be :

1 $5 \times 10^{22} / \mathrm{s}$
2 $5 \times 10^{16} / \mathrm{s}$
3 $8 \times 10^{16} / \mathrm{s}$
4 $20 \times 10^{16} / \mathrm{s}$
NUCLEAR PHYSICS

147988 Which one is correct about fission?

1 Approx. $0.1 \%$ mass converts into energy
2 Most of energy of fission is in the from of heat
3 In a fission of $\mathrm{U}^{235}$ about $200 \mathrm{eV}$ energy is released
4 On an average, one neutron is released per fission of $\mathrm{U}^{235}$
NUCLEAR PHYSICS

147956 The energy released per fission of a ${ }_{92} U^{235}$ nucleus is nearly-

1 $200 \mathrm{eV}$
2 $20 \mathrm{eV}$
3 $200 \mathrm{MeV}$
4 $2000 \mathrm{eV}$
NUCLEAR PHYSICS

147962 If the energy of a hydrogen atom in $\mathbf{n}^{\text {th }}$ orbit is $E_{n}$ then energy in the $n^{\text {th }}$ orbit of a singly ionized helium atom will be

1 $4 \mathrm{E}_{\mathrm{n}}$
2 $\mathrm{E}_{\mathrm{n}} / 2$
3 $2 \mathrm{E}_{\mathrm{n}}$
4 $250 \mathrm{~m} / \mathrm{s}$
NUCLEAR PHYSICS

147964 On bombarding $\mathrm{U}^{235}$ by slow neutron, $200 \mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be :

1 $5 \times 10^{22} / \mathrm{s}$
2 $5 \times 10^{16} / \mathrm{s}$
3 $8 \times 10^{16} / \mathrm{s}$
4 $20 \times 10^{16} / \mathrm{s}$
NUCLEAR PHYSICS

147988 Which one is correct about fission?

1 Approx. $0.1 \%$ mass converts into energy
2 Most of energy of fission is in the from of heat
3 In a fission of $\mathrm{U}^{235}$ about $200 \mathrm{eV}$ energy is released
4 On an average, one neutron is released per fission of $\mathrm{U}^{235}$
NUCLEAR PHYSICS

147956 The energy released per fission of a ${ }_{92} U^{235}$ nucleus is nearly-

1 $200 \mathrm{eV}$
2 $20 \mathrm{eV}$
3 $200 \mathrm{MeV}$
4 $2000 \mathrm{eV}$
NUCLEAR PHYSICS

147962 If the energy of a hydrogen atom in $\mathbf{n}^{\text {th }}$ orbit is $E_{n}$ then energy in the $n^{\text {th }}$ orbit of a singly ionized helium atom will be

1 $4 \mathrm{E}_{\mathrm{n}}$
2 $\mathrm{E}_{\mathrm{n}} / 2$
3 $2 \mathrm{E}_{\mathrm{n}}$
4 $250 \mathrm{~m} / \mathrm{s}$
NUCLEAR PHYSICS

147964 On bombarding $\mathrm{U}^{235}$ by slow neutron, $200 \mathrm{MeV}$ energy is released. If the power output of atomic reactor is $1.6 \mathrm{MW}$, then the rate of fission will be :

1 $5 \times 10^{22} / \mathrm{s}$
2 $5 \times 10^{16} / \mathrm{s}$
3 $8 \times 10^{16} / \mathrm{s}$
4 $20 \times 10^{16} / \mathrm{s}$