Nuclear Fission (Moderator, Coolantant) Fusion, Nuclear Energy
NUCLEAR PHYSICS

147957 Nucleus $A$ is having mass number 220 and its binding energy per nucleon is $5.6 \mathrm{MeV}$. It splits in two fragments ' $B$ ' and ' $C$ ' of mass numbers 105. and 115. The binding energy of nucleons in ' $B$ ' and ' $C$ ' is $6.4 \mathrm{MeV}$ per nucleon. The energy $Q$ released per fission will be:

1 $0.8 \mathrm{MeV}$
2 $275 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $176 \mathrm{MeV}$
NUCLEAR PHYSICS

147958 What will be the energy released in joule, in the process of fission by $1 \mathrm{mg}$ of ${ }_{92}^{240} \mathrm{U}$. Assume energy release per fission is $200 \mathrm{MeV}$.
[use Avogadro's number as $6 \times 10^{23}$ and $\left.\mathrm{leV}=1.6 \times 10^{-19} \mathrm{~J}\right]$

1 $6.2 \times 10^{7} \mathrm{~J}$
2 $7.0 \times 10^{7} \mathrm{~J}$
3 $8.0 \times 10^{7} \mathrm{~J}$
4 $8.2 \times 10^{7} \mathrm{~J}$
NUCLEAR PHYSICS

147961 $200 \mathrm{MeV}$ energy is released when one nucleus of ${ }^{235} \mathrm{U}$ undergoes fission. The approximate energy released by fission of $\mathbf{2} \mathbf{~ k g}$ of uranium is

1 $8.0 \times 10^{13} \mathrm{~J}$
2 $1.0 \times 10^{15} \mathrm{~J}$
3 $1.63 \times 10^{14} \mathrm{~J}$
4 $1.8 \times 10^{12} \mathrm{~J}$
NUCLEAR PHYSICS

147963 A photon creates a pair of electron- positron with equal kinetic energy. Let kinetic energy of each particle is $0.29 \mathrm{Me} \mathrm{V}$. Then what should be energy of the photon?

1 $1.60 \mathrm{MeV}$
2 $1.63 \mathrm{MeV}$
3 $2.0 \mathrm{MeV}$
4 $1.90 \mathrm{MeV}$
NUCLEAR PHYSICS

147966 How many neutrons will produced for a given following nuclear fission reaction?
${ }_{0} \mathbf{n}^{1}+{ }_{92} \mathbf{U}^{235} \rightarrow{ }_{56} \mathbf{B a}^{144}+{ }_{36} \mathbf{k r}^{89}+\mathbf{x}_{0} \mathbf{n}^{1}$

1 1
2 3
3 2
4 4
NUCLEAR PHYSICS

147957 Nucleus $A$ is having mass number 220 and its binding energy per nucleon is $5.6 \mathrm{MeV}$. It splits in two fragments ' $B$ ' and ' $C$ ' of mass numbers 105. and 115. The binding energy of nucleons in ' $B$ ' and ' $C$ ' is $6.4 \mathrm{MeV}$ per nucleon. The energy $Q$ released per fission will be:

1 $0.8 \mathrm{MeV}$
2 $275 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $176 \mathrm{MeV}$
NUCLEAR PHYSICS

147958 What will be the energy released in joule, in the process of fission by $1 \mathrm{mg}$ of ${ }_{92}^{240} \mathrm{U}$. Assume energy release per fission is $200 \mathrm{MeV}$.
[use Avogadro's number as $6 \times 10^{23}$ and $\left.\mathrm{leV}=1.6 \times 10^{-19} \mathrm{~J}\right]$

1 $6.2 \times 10^{7} \mathrm{~J}$
2 $7.0 \times 10^{7} \mathrm{~J}$
3 $8.0 \times 10^{7} \mathrm{~J}$
4 $8.2 \times 10^{7} \mathrm{~J}$
NUCLEAR PHYSICS

147961 $200 \mathrm{MeV}$ energy is released when one nucleus of ${ }^{235} \mathrm{U}$ undergoes fission. The approximate energy released by fission of $\mathbf{2} \mathbf{~ k g}$ of uranium is

1 $8.0 \times 10^{13} \mathrm{~J}$
2 $1.0 \times 10^{15} \mathrm{~J}$
3 $1.63 \times 10^{14} \mathrm{~J}$
4 $1.8 \times 10^{12} \mathrm{~J}$
NUCLEAR PHYSICS

147963 A photon creates a pair of electron- positron with equal kinetic energy. Let kinetic energy of each particle is $0.29 \mathrm{Me} \mathrm{V}$. Then what should be energy of the photon?

1 $1.60 \mathrm{MeV}$
2 $1.63 \mathrm{MeV}$
3 $2.0 \mathrm{MeV}$
4 $1.90 \mathrm{MeV}$
NUCLEAR PHYSICS

147966 How many neutrons will produced for a given following nuclear fission reaction?
${ }_{0} \mathbf{n}^{1}+{ }_{92} \mathbf{U}^{235} \rightarrow{ }_{56} \mathbf{B a}^{144}+{ }_{36} \mathbf{k r}^{89}+\mathbf{x}_{0} \mathbf{n}^{1}$

1 1
2 3
3 2
4 4
NUCLEAR PHYSICS

147957 Nucleus $A$ is having mass number 220 and its binding energy per nucleon is $5.6 \mathrm{MeV}$. It splits in two fragments ' $B$ ' and ' $C$ ' of mass numbers 105. and 115. The binding energy of nucleons in ' $B$ ' and ' $C$ ' is $6.4 \mathrm{MeV}$ per nucleon. The energy $Q$ released per fission will be:

1 $0.8 \mathrm{MeV}$
2 $275 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $176 \mathrm{MeV}$
NUCLEAR PHYSICS

147958 What will be the energy released in joule, in the process of fission by $1 \mathrm{mg}$ of ${ }_{92}^{240} \mathrm{U}$. Assume energy release per fission is $200 \mathrm{MeV}$.
[use Avogadro's number as $6 \times 10^{23}$ and $\left.\mathrm{leV}=1.6 \times 10^{-19} \mathrm{~J}\right]$

1 $6.2 \times 10^{7} \mathrm{~J}$
2 $7.0 \times 10^{7} \mathrm{~J}$
3 $8.0 \times 10^{7} \mathrm{~J}$
4 $8.2 \times 10^{7} \mathrm{~J}$
NUCLEAR PHYSICS

147961 $200 \mathrm{MeV}$ energy is released when one nucleus of ${ }^{235} \mathrm{U}$ undergoes fission. The approximate energy released by fission of $\mathbf{2} \mathbf{~ k g}$ of uranium is

1 $8.0 \times 10^{13} \mathrm{~J}$
2 $1.0 \times 10^{15} \mathrm{~J}$
3 $1.63 \times 10^{14} \mathrm{~J}$
4 $1.8 \times 10^{12} \mathrm{~J}$
NUCLEAR PHYSICS

147963 A photon creates a pair of electron- positron with equal kinetic energy. Let kinetic energy of each particle is $0.29 \mathrm{Me} \mathrm{V}$. Then what should be energy of the photon?

1 $1.60 \mathrm{MeV}$
2 $1.63 \mathrm{MeV}$
3 $2.0 \mathrm{MeV}$
4 $1.90 \mathrm{MeV}$
NUCLEAR PHYSICS

147966 How many neutrons will produced for a given following nuclear fission reaction?
${ }_{0} \mathbf{n}^{1}+{ }_{92} \mathbf{U}^{235} \rightarrow{ }_{56} \mathbf{B a}^{144}+{ }_{36} \mathbf{k r}^{89}+\mathbf{x}_{0} \mathbf{n}^{1}$

1 1
2 3
3 2
4 4
NUCLEAR PHYSICS

147957 Nucleus $A$ is having mass number 220 and its binding energy per nucleon is $5.6 \mathrm{MeV}$. It splits in two fragments ' $B$ ' and ' $C$ ' of mass numbers 105. and 115. The binding energy of nucleons in ' $B$ ' and ' $C$ ' is $6.4 \mathrm{MeV}$ per nucleon. The energy $Q$ released per fission will be:

1 $0.8 \mathrm{MeV}$
2 $275 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $176 \mathrm{MeV}$
NUCLEAR PHYSICS

147958 What will be the energy released in joule, in the process of fission by $1 \mathrm{mg}$ of ${ }_{92}^{240} \mathrm{U}$. Assume energy release per fission is $200 \mathrm{MeV}$.
[use Avogadro's number as $6 \times 10^{23}$ and $\left.\mathrm{leV}=1.6 \times 10^{-19} \mathrm{~J}\right]$

1 $6.2 \times 10^{7} \mathrm{~J}$
2 $7.0 \times 10^{7} \mathrm{~J}$
3 $8.0 \times 10^{7} \mathrm{~J}$
4 $8.2 \times 10^{7} \mathrm{~J}$
NUCLEAR PHYSICS

147961 $200 \mathrm{MeV}$ energy is released when one nucleus of ${ }^{235} \mathrm{U}$ undergoes fission. The approximate energy released by fission of $\mathbf{2} \mathbf{~ k g}$ of uranium is

1 $8.0 \times 10^{13} \mathrm{~J}$
2 $1.0 \times 10^{15} \mathrm{~J}$
3 $1.63 \times 10^{14} \mathrm{~J}$
4 $1.8 \times 10^{12} \mathrm{~J}$
NUCLEAR PHYSICS

147963 A photon creates a pair of electron- positron with equal kinetic energy. Let kinetic energy of each particle is $0.29 \mathrm{Me} \mathrm{V}$. Then what should be energy of the photon?

1 $1.60 \mathrm{MeV}$
2 $1.63 \mathrm{MeV}$
3 $2.0 \mathrm{MeV}$
4 $1.90 \mathrm{MeV}$
NUCLEAR PHYSICS

147966 How many neutrons will produced for a given following nuclear fission reaction?
${ }_{0} \mathbf{n}^{1}+{ }_{92} \mathbf{U}^{235} \rightarrow{ }_{56} \mathbf{B a}^{144}+{ }_{36} \mathbf{k r}^{89}+\mathbf{x}_{0} \mathbf{n}^{1}$

1 1
2 3
3 2
4 4
NUCLEAR PHYSICS

147957 Nucleus $A$ is having mass number 220 and its binding energy per nucleon is $5.6 \mathrm{MeV}$. It splits in two fragments ' $B$ ' and ' $C$ ' of mass numbers 105. and 115. The binding energy of nucleons in ' $B$ ' and ' $C$ ' is $6.4 \mathrm{MeV}$ per nucleon. The energy $Q$ released per fission will be:

1 $0.8 \mathrm{MeV}$
2 $275 \mathrm{MeV}$
3 $220 \mathrm{MeV}$
4 $176 \mathrm{MeV}$
NUCLEAR PHYSICS

147958 What will be the energy released in joule, in the process of fission by $1 \mathrm{mg}$ of ${ }_{92}^{240} \mathrm{U}$. Assume energy release per fission is $200 \mathrm{MeV}$.
[use Avogadro's number as $6 \times 10^{23}$ and $\left.\mathrm{leV}=1.6 \times 10^{-19} \mathrm{~J}\right]$

1 $6.2 \times 10^{7} \mathrm{~J}$
2 $7.0 \times 10^{7} \mathrm{~J}$
3 $8.0 \times 10^{7} \mathrm{~J}$
4 $8.2 \times 10^{7} \mathrm{~J}$
NUCLEAR PHYSICS

147961 $200 \mathrm{MeV}$ energy is released when one nucleus of ${ }^{235} \mathrm{U}$ undergoes fission. The approximate energy released by fission of $\mathbf{2} \mathbf{~ k g}$ of uranium is

1 $8.0 \times 10^{13} \mathrm{~J}$
2 $1.0 \times 10^{15} \mathrm{~J}$
3 $1.63 \times 10^{14} \mathrm{~J}$
4 $1.8 \times 10^{12} \mathrm{~J}$
NUCLEAR PHYSICS

147963 A photon creates a pair of electron- positron with equal kinetic energy. Let kinetic energy of each particle is $0.29 \mathrm{Me} \mathrm{V}$. Then what should be energy of the photon?

1 $1.60 \mathrm{MeV}$
2 $1.63 \mathrm{MeV}$
3 $2.0 \mathrm{MeV}$
4 $1.90 \mathrm{MeV}$
NUCLEAR PHYSICS

147966 How many neutrons will produced for a given following nuclear fission reaction?
${ }_{0} \mathbf{n}^{1}+{ }_{92} \mathbf{U}^{235} \rightarrow{ }_{56} \mathbf{B a}^{144}+{ }_{36} \mathbf{k r}^{89}+\mathbf{x}_{0} \mathbf{n}^{1}$

1 1
2 3
3 2
4 4