Combination of Capacitor
Capacitance

165837 Four capacitors are connected as shown in the figure below. The equivalent capacitance between the points $P$ and $Q$ is

1 $4 \mu \mathrm{F}$
2 $\frac{1}{4} \mu \mathrm{F}$
3 $\frac{3}{4} \mu \mathrm{F}$
4 $\frac{4}{3} \mu \mathrm{F}$
Capacitance

165838 Three capacitors each of $4 \mu \mathrm{F}$ are to be connected in such a way that the effective capacitance is $6 \mu \mathrm{F}$. This can be done by

1 Connecting all of them in series
2 Connecting them in parallel
3 Connecting two in series and one in parallel
4 Connecting two in parallel and one in series
Capacitance

165839 Three capacitors $C_{1}, C_{2}$ and $C_{3}$ are connected to a battery of $\mathrm{V}$ volt as shown in figure. The charges and potentials are shown in figure. Then, the correct answer is

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}$
2 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$
3 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}$
4 $\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{2}=\mathrm{V}_{3}$
Capacitance

165840 Equivalent capacitance between $A$ and $B$ for circuit shown in figure.

1 $3 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165841 Potential difference across capacitor $4.5 \mu \mathrm{F}$ capacitance is

1 $\frac{8}{3} \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
Capacitance

165837 Four capacitors are connected as shown in the figure below. The equivalent capacitance between the points $P$ and $Q$ is

1 $4 \mu \mathrm{F}$
2 $\frac{1}{4} \mu \mathrm{F}$
3 $\frac{3}{4} \mu \mathrm{F}$
4 $\frac{4}{3} \mu \mathrm{F}$
Capacitance

165838 Three capacitors each of $4 \mu \mathrm{F}$ are to be connected in such a way that the effective capacitance is $6 \mu \mathrm{F}$. This can be done by

1 Connecting all of them in series
2 Connecting them in parallel
3 Connecting two in series and one in parallel
4 Connecting two in parallel and one in series
Capacitance

165839 Three capacitors $C_{1}, C_{2}$ and $C_{3}$ are connected to a battery of $\mathrm{V}$ volt as shown in figure. The charges and potentials are shown in figure. Then, the correct answer is

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}$
2 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$
3 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}$
4 $\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{2}=\mathrm{V}_{3}$
Capacitance

165840 Equivalent capacitance between $A$ and $B$ for circuit shown in figure.

1 $3 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165841 Potential difference across capacitor $4.5 \mu \mathrm{F}$ capacitance is

1 $\frac{8}{3} \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Capacitance

165837 Four capacitors are connected as shown in the figure below. The equivalent capacitance between the points $P$ and $Q$ is

1 $4 \mu \mathrm{F}$
2 $\frac{1}{4} \mu \mathrm{F}$
3 $\frac{3}{4} \mu \mathrm{F}$
4 $\frac{4}{3} \mu \mathrm{F}$
Capacitance

165838 Three capacitors each of $4 \mu \mathrm{F}$ are to be connected in such a way that the effective capacitance is $6 \mu \mathrm{F}$. This can be done by

1 Connecting all of them in series
2 Connecting them in parallel
3 Connecting two in series and one in parallel
4 Connecting two in parallel and one in series
Capacitance

165839 Three capacitors $C_{1}, C_{2}$ and $C_{3}$ are connected to a battery of $\mathrm{V}$ volt as shown in figure. The charges and potentials are shown in figure. Then, the correct answer is

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}$
2 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$
3 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}$
4 $\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{2}=\mathrm{V}_{3}$
Capacitance

165840 Equivalent capacitance between $A$ and $B$ for circuit shown in figure.

1 $3 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165841 Potential difference across capacitor $4.5 \mu \mathrm{F}$ capacitance is

1 $\frac{8}{3} \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
Capacitance

165837 Four capacitors are connected as shown in the figure below. The equivalent capacitance between the points $P$ and $Q$ is

1 $4 \mu \mathrm{F}$
2 $\frac{1}{4} \mu \mathrm{F}$
3 $\frac{3}{4} \mu \mathrm{F}$
4 $\frac{4}{3} \mu \mathrm{F}$
Capacitance

165838 Three capacitors each of $4 \mu \mathrm{F}$ are to be connected in such a way that the effective capacitance is $6 \mu \mathrm{F}$. This can be done by

1 Connecting all of them in series
2 Connecting them in parallel
3 Connecting two in series and one in parallel
4 Connecting two in parallel and one in series
Capacitance

165839 Three capacitors $C_{1}, C_{2}$ and $C_{3}$ are connected to a battery of $\mathrm{V}$ volt as shown in figure. The charges and potentials are shown in figure. Then, the correct answer is

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}$
2 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$
3 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}$
4 $\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{2}=\mathrm{V}_{3}$
Capacitance

165840 Equivalent capacitance between $A$ and $B$ for circuit shown in figure.

1 $3 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165841 Potential difference across capacitor $4.5 \mu \mathrm{F}$ capacitance is

1 $\frac{8}{3} \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
Capacitance

165837 Four capacitors are connected as shown in the figure below. The equivalent capacitance between the points $P$ and $Q$ is

1 $4 \mu \mathrm{F}$
2 $\frac{1}{4} \mu \mathrm{F}$
3 $\frac{3}{4} \mu \mathrm{F}$
4 $\frac{4}{3} \mu \mathrm{F}$
Capacitance

165838 Three capacitors each of $4 \mu \mathrm{F}$ are to be connected in such a way that the effective capacitance is $6 \mu \mathrm{F}$. This can be done by

1 Connecting all of them in series
2 Connecting them in parallel
3 Connecting two in series and one in parallel
4 Connecting two in parallel and one in series
Capacitance

165839 Three capacitors $C_{1}, C_{2}$ and $C_{3}$ are connected to a battery of $\mathrm{V}$ volt as shown in figure. The charges and potentials are shown in figure. Then, the correct answer is

1 $\mathrm{Q}_{1}=\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{1}=\mathrm{V}_{2}=\mathrm{V}_{3}=\mathrm{V}$
2 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}+\mathrm{V}_{3}$
3 $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}, \mathrm{~V}=\mathrm{V}_{1}+\mathrm{V}_{2}$
4 $\mathrm{Q}_{2}=\mathrm{Q}_{3}, \mathrm{~V}_{2}=\mathrm{V}_{3}$
Capacitance

165840 Equivalent capacitance between $A$ and $B$ for circuit shown in figure.

1 $3 \mu \mathrm{F}$
2 $2 \mu \mathrm{F}$
3 $4 \mu \mathrm{F}$
4 $8 \mu \mathrm{F}$
Capacitance

165841 Potential difference across capacitor $4.5 \mu \mathrm{F}$ capacitance is

1 $\frac{8}{3} \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$