Combination of Capacitor
Capacitance

165791 The equivalent capacitance of the combination shown is

1 $\frac{\mathrm{C}}{2}$
2 $4 \mathrm{C}$
3 $2 \mathrm{C}$
4 $\frac{5}{3} \mathrm{C}$
Capacitance

165792 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in fig. The dc voltmeter reads $200 \mathrm{~V}$. The charge on each plate of Capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165793 A network of four capacitors of capacity equal to $\mathrm{C}_{1}=\mathrm{C}, \mathrm{C}_{2}=2 \mathrm{C}, \mathrm{C}_{3}=3 \mathrm{C}$ and $\mathrm{C}_{4}=4 \mathrm{C}$ are conducted to a battery as shown in the figure . The ratio of the charges on $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ is

1 $4 / 7$
2 $3 / 22$
3 $7 / 4$
4 $22 / 3$
Capacitance

165794 Two capacitors each having a capacitance $2 \times 10^{-6} \mathrm{~F}$ and a breakdown voltage $5000 \mathrm{~V}$, are joined in series. What will be the resultant capacitance and the breakdown voltage of the combination?

1 $4 \times 10^{-6} \mathrm{~F} \& 1,000 \mathrm{~V}$
2 $10^{-6} \mathrm{~F} \& 10,000 \mathrm{~V}$
3 $2 \times 10^{-6} \mathrm{~F} \& 5,000 \mathrm{~V}$
4 $10^{-6} \mathrm{~F} \& 2,500 \mathrm{~V}$
Capacitance

165795 A circuit is shown in the following figure for which $\mathbf{C}_{1}=(3 \pm 0.011) \mu \mathbf{F}, \mathbf{C}_{2}=(5 \pm 0.01) \mu \mathbf{F}$ and $\mathbf{C}_{3}=(1 \pm 0.01) \mu \mathbf{F}$. If $\mathbf{C}$ is the equivalent capacitance across $A B$, then $C$ is given by:

1 $(0.9 \pm 0.114) \mu \mathrm{F}$
2 $(0.9 \pm 0.01) \mu \mathrm{F}$
3 $(0.9 \pm 0.023) \mu \mathrm{F}$
4 $(0.9 \pm 0.09) \mu \mathrm{F}$
Capacitance

165791 The equivalent capacitance of the combination shown is

1 $\frac{\mathrm{C}}{2}$
2 $4 \mathrm{C}$
3 $2 \mathrm{C}$
4 $\frac{5}{3} \mathrm{C}$
Capacitance

165792 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in fig. The dc voltmeter reads $200 \mathrm{~V}$. The charge on each plate of Capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165793 A network of four capacitors of capacity equal to $\mathrm{C}_{1}=\mathrm{C}, \mathrm{C}_{2}=2 \mathrm{C}, \mathrm{C}_{3}=3 \mathrm{C}$ and $\mathrm{C}_{4}=4 \mathrm{C}$ are conducted to a battery as shown in the figure . The ratio of the charges on $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ is

1 $4 / 7$
2 $3 / 22$
3 $7 / 4$
4 $22 / 3$
Capacitance

165794 Two capacitors each having a capacitance $2 \times 10^{-6} \mathrm{~F}$ and a breakdown voltage $5000 \mathrm{~V}$, are joined in series. What will be the resultant capacitance and the breakdown voltage of the combination?

1 $4 \times 10^{-6} \mathrm{~F} \& 1,000 \mathrm{~V}$
2 $10^{-6} \mathrm{~F} \& 10,000 \mathrm{~V}$
3 $2 \times 10^{-6} \mathrm{~F} \& 5,000 \mathrm{~V}$
4 $10^{-6} \mathrm{~F} \& 2,500 \mathrm{~V}$
Capacitance

165795 A circuit is shown in the following figure for which $\mathbf{C}_{1}=(3 \pm 0.011) \mu \mathbf{F}, \mathbf{C}_{2}=(5 \pm 0.01) \mu \mathbf{F}$ and $\mathbf{C}_{3}=(1 \pm 0.01) \mu \mathbf{F}$. If $\mathbf{C}$ is the equivalent capacitance across $A B$, then $C$ is given by:

1 $(0.9 \pm 0.114) \mu \mathrm{F}$
2 $(0.9 \pm 0.01) \mu \mathrm{F}$
3 $(0.9 \pm 0.023) \mu \mathrm{F}$
4 $(0.9 \pm 0.09) \mu \mathrm{F}$
Capacitance

165791 The equivalent capacitance of the combination shown is

1 $\frac{\mathrm{C}}{2}$
2 $4 \mathrm{C}$
3 $2 \mathrm{C}$
4 $\frac{5}{3} \mathrm{C}$
Capacitance

165792 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in fig. The dc voltmeter reads $200 \mathrm{~V}$. The charge on each plate of Capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165793 A network of four capacitors of capacity equal to $\mathrm{C}_{1}=\mathrm{C}, \mathrm{C}_{2}=2 \mathrm{C}, \mathrm{C}_{3}=3 \mathrm{C}$ and $\mathrm{C}_{4}=4 \mathrm{C}$ are conducted to a battery as shown in the figure . The ratio of the charges on $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ is

1 $4 / 7$
2 $3 / 22$
3 $7 / 4$
4 $22 / 3$
Capacitance

165794 Two capacitors each having a capacitance $2 \times 10^{-6} \mathrm{~F}$ and a breakdown voltage $5000 \mathrm{~V}$, are joined in series. What will be the resultant capacitance and the breakdown voltage of the combination?

1 $4 \times 10^{-6} \mathrm{~F} \& 1,000 \mathrm{~V}$
2 $10^{-6} \mathrm{~F} \& 10,000 \mathrm{~V}$
3 $2 \times 10^{-6} \mathrm{~F} \& 5,000 \mathrm{~V}$
4 $10^{-6} \mathrm{~F} \& 2,500 \mathrm{~V}$
Capacitance

165795 A circuit is shown in the following figure for which $\mathbf{C}_{1}=(3 \pm 0.011) \mu \mathbf{F}, \mathbf{C}_{2}=(5 \pm 0.01) \mu \mathbf{F}$ and $\mathbf{C}_{3}=(1 \pm 0.01) \mu \mathbf{F}$. If $\mathbf{C}$ is the equivalent capacitance across $A B$, then $C$ is given by:

1 $(0.9 \pm 0.114) \mu \mathrm{F}$
2 $(0.9 \pm 0.01) \mu \mathrm{F}$
3 $(0.9 \pm 0.023) \mu \mathrm{F}$
4 $(0.9 \pm 0.09) \mu \mathrm{F}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Capacitance

165791 The equivalent capacitance of the combination shown is

1 $\frac{\mathrm{C}}{2}$
2 $4 \mathrm{C}$
3 $2 \mathrm{C}$
4 $\frac{5}{3} \mathrm{C}$
Capacitance

165792 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in fig. The dc voltmeter reads $200 \mathrm{~V}$. The charge on each plate of Capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165793 A network of four capacitors of capacity equal to $\mathrm{C}_{1}=\mathrm{C}, \mathrm{C}_{2}=2 \mathrm{C}, \mathrm{C}_{3}=3 \mathrm{C}$ and $\mathrm{C}_{4}=4 \mathrm{C}$ are conducted to a battery as shown in the figure . The ratio of the charges on $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ is

1 $4 / 7$
2 $3 / 22$
3 $7 / 4$
4 $22 / 3$
Capacitance

165794 Two capacitors each having a capacitance $2 \times 10^{-6} \mathrm{~F}$ and a breakdown voltage $5000 \mathrm{~V}$, are joined in series. What will be the resultant capacitance and the breakdown voltage of the combination?

1 $4 \times 10^{-6} \mathrm{~F} \& 1,000 \mathrm{~V}$
2 $10^{-6} \mathrm{~F} \& 10,000 \mathrm{~V}$
3 $2 \times 10^{-6} \mathrm{~F} \& 5,000 \mathrm{~V}$
4 $10^{-6} \mathrm{~F} \& 2,500 \mathrm{~V}$
Capacitance

165795 A circuit is shown in the following figure for which $\mathbf{C}_{1}=(3 \pm 0.011) \mu \mathbf{F}, \mathbf{C}_{2}=(5 \pm 0.01) \mu \mathbf{F}$ and $\mathbf{C}_{3}=(1 \pm 0.01) \mu \mathbf{F}$. If $\mathbf{C}$ is the equivalent capacitance across $A B$, then $C$ is given by:

1 $(0.9 \pm 0.114) \mu \mathrm{F}$
2 $(0.9 \pm 0.01) \mu \mathrm{F}$
3 $(0.9 \pm 0.023) \mu \mathrm{F}$
4 $(0.9 \pm 0.09) \mu \mathrm{F}$
Capacitance

165791 The equivalent capacitance of the combination shown is

1 $\frac{\mathrm{C}}{2}$
2 $4 \mathrm{C}$
3 $2 \mathrm{C}$
4 $\frac{5}{3} \mathrm{C}$
Capacitance

165792 The four capacitors, each of $25 \mu \mathrm{F}$ are connected as shown in fig. The dc voltmeter reads $200 \mathrm{~V}$. The charge on each plate of Capacitor is

1 $\pm 2 \times 10^{-3} \mathrm{C}$
2 $\pm 5 \times 10^{-3} \mathrm{C}$
3 $\pm 2 \times 10^{-2} \mathrm{C}$
4 $\pm 5 \times 10^{-2} \mathrm{C}$
Capacitance

165793 A network of four capacitors of capacity equal to $\mathrm{C}_{1}=\mathrm{C}, \mathrm{C}_{2}=2 \mathrm{C}, \mathrm{C}_{3}=3 \mathrm{C}$ and $\mathrm{C}_{4}=4 \mathrm{C}$ are conducted to a battery as shown in the figure . The ratio of the charges on $\mathrm{C}_{2}$ and $\mathrm{C}_{4}$ is

1 $4 / 7$
2 $3 / 22$
3 $7 / 4$
4 $22 / 3$
Capacitance

165794 Two capacitors each having a capacitance $2 \times 10^{-6} \mathrm{~F}$ and a breakdown voltage $5000 \mathrm{~V}$, are joined in series. What will be the resultant capacitance and the breakdown voltage of the combination?

1 $4 \times 10^{-6} \mathrm{~F} \& 1,000 \mathrm{~V}$
2 $10^{-6} \mathrm{~F} \& 10,000 \mathrm{~V}$
3 $2 \times 10^{-6} \mathrm{~F} \& 5,000 \mathrm{~V}$
4 $10^{-6} \mathrm{~F} \& 2,500 \mathrm{~V}$
Capacitance

165795 A circuit is shown in the following figure for which $\mathbf{C}_{1}=(3 \pm 0.011) \mu \mathbf{F}, \mathbf{C}_{2}=(5 \pm 0.01) \mu \mathbf{F}$ and $\mathbf{C}_{3}=(1 \pm 0.01) \mu \mathbf{F}$. If $\mathbf{C}$ is the equivalent capacitance across $A B$, then $C$ is given by:

1 $(0.9 \pm 0.114) \mu \mathrm{F}$
2 $(0.9 \pm 0.01) \mu \mathrm{F}$
3 $(0.9 \pm 0.023) \mu \mathrm{F}$
4 $(0.9 \pm 0.09) \mu \mathrm{F}$