Energy Stored in Capacitor
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Capacitance

165705 Capacitor of $12 \mathrm{pF}$ capacitance is connected to $50 \mathrm{~V}$ battery then electrostatic potential energy will be

1 $1.5 \times 10^{-8} \mathrm{~J}$
2 $2.5 \times 10^{-7} \mathrm{~J}$
3 $3.5 \times 10^{-5} \mathrm{~J}$
4 $4.5 \times 10^{-2} \mathrm{~J}$
Capacitance

165706 A $1 \mu \mathrm{F}$ capacitance of $\mathrm{TV}$ is subjected to $4000 \mathrm{~V}$ potential difference. The energy stored in the capacitor is

1 $8 \mathrm{~J}$
2 $16 \mathrm{~J}$
3 $4 \times 10^{-3} \mathrm{~J}$
4 $2 \times 10^{-3} \mathrm{~J}$
Capacitance

165707 Two capacitors of capacitance $2 \mu \mathrm{F}$ and $3 \mu \mathrm{F}$ are joined in series. Outer plate of first capacitor is at $1000 \mathrm{~V}$ and outer plate of second capacitor is earthed. Now the potential on inner plate of each capacitor will be

1 $700 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $600 \mathrm{~V}$
4 $400 \mathrm{~V}$
Capacitance

165708 A capacitor is charged to store an energy $U$. The charging battery is disconnected. An identical capacitor is now connected to the first capacitor in parallel. The energy in each of the capacitors is

1 $3 \mathrm{U} / 2$
2 U
3 $\mathrm{U} / 4$
4 $U / 2$
Capacitance

165705 Capacitor of $12 \mathrm{pF}$ capacitance is connected to $50 \mathrm{~V}$ battery then electrostatic potential energy will be

1 $1.5 \times 10^{-8} \mathrm{~J}$
2 $2.5 \times 10^{-7} \mathrm{~J}$
3 $3.5 \times 10^{-5} \mathrm{~J}$
4 $4.5 \times 10^{-2} \mathrm{~J}$
Capacitance

165706 A $1 \mu \mathrm{F}$ capacitance of $\mathrm{TV}$ is subjected to $4000 \mathrm{~V}$ potential difference. The energy stored in the capacitor is

1 $8 \mathrm{~J}$
2 $16 \mathrm{~J}$
3 $4 \times 10^{-3} \mathrm{~J}$
4 $2 \times 10^{-3} \mathrm{~J}$
Capacitance

165707 Two capacitors of capacitance $2 \mu \mathrm{F}$ and $3 \mu \mathrm{F}$ are joined in series. Outer plate of first capacitor is at $1000 \mathrm{~V}$ and outer plate of second capacitor is earthed. Now the potential on inner plate of each capacitor will be

1 $700 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $600 \mathrm{~V}$
4 $400 \mathrm{~V}$
Capacitance

165708 A capacitor is charged to store an energy $U$. The charging battery is disconnected. An identical capacitor is now connected to the first capacitor in parallel. The energy in each of the capacitors is

1 $3 \mathrm{U} / 2$
2 U
3 $\mathrm{U} / 4$
4 $U / 2$
Capacitance

165705 Capacitor of $12 \mathrm{pF}$ capacitance is connected to $50 \mathrm{~V}$ battery then electrostatic potential energy will be

1 $1.5 \times 10^{-8} \mathrm{~J}$
2 $2.5 \times 10^{-7} \mathrm{~J}$
3 $3.5 \times 10^{-5} \mathrm{~J}$
4 $4.5 \times 10^{-2} \mathrm{~J}$
Capacitance

165706 A $1 \mu \mathrm{F}$ capacitance of $\mathrm{TV}$ is subjected to $4000 \mathrm{~V}$ potential difference. The energy stored in the capacitor is

1 $8 \mathrm{~J}$
2 $16 \mathrm{~J}$
3 $4 \times 10^{-3} \mathrm{~J}$
4 $2 \times 10^{-3} \mathrm{~J}$
Capacitance

165707 Two capacitors of capacitance $2 \mu \mathrm{F}$ and $3 \mu \mathrm{F}$ are joined in series. Outer plate of first capacitor is at $1000 \mathrm{~V}$ and outer plate of second capacitor is earthed. Now the potential on inner plate of each capacitor will be

1 $700 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $600 \mathrm{~V}$
4 $400 \mathrm{~V}$
Capacitance

165708 A capacitor is charged to store an energy $U$. The charging battery is disconnected. An identical capacitor is now connected to the first capacitor in parallel. The energy in each of the capacitors is

1 $3 \mathrm{U} / 2$
2 U
3 $\mathrm{U} / 4$
4 $U / 2$
Capacitance

165705 Capacitor of $12 \mathrm{pF}$ capacitance is connected to $50 \mathrm{~V}$ battery then electrostatic potential energy will be

1 $1.5 \times 10^{-8} \mathrm{~J}$
2 $2.5 \times 10^{-7} \mathrm{~J}$
3 $3.5 \times 10^{-5} \mathrm{~J}$
4 $4.5 \times 10^{-2} \mathrm{~J}$
Capacitance

165706 A $1 \mu \mathrm{F}$ capacitance of $\mathrm{TV}$ is subjected to $4000 \mathrm{~V}$ potential difference. The energy stored in the capacitor is

1 $8 \mathrm{~J}$
2 $16 \mathrm{~J}$
3 $4 \times 10^{-3} \mathrm{~J}$
4 $2 \times 10^{-3} \mathrm{~J}$
Capacitance

165707 Two capacitors of capacitance $2 \mu \mathrm{F}$ and $3 \mu \mathrm{F}$ are joined in series. Outer plate of first capacitor is at $1000 \mathrm{~V}$ and outer plate of second capacitor is earthed. Now the potential on inner plate of each capacitor will be

1 $700 \mathrm{~V}$
2 $200 \mathrm{~V}$
3 $600 \mathrm{~V}$
4 $400 \mathrm{~V}$
Capacitance

165708 A capacitor is charged to store an energy $U$. The charging battery is disconnected. An identical capacitor is now connected to the first capacitor in parallel. The energy in each of the capacitors is

1 $3 \mathrm{U} / 2$
2 U
3 $\mathrm{U} / 4$
4 $U / 2$