Capacitance
Capacitance

165589 The distance between two plates of a capacitor is $d$ and its capacitance is $C_{1}$, when air is the medium between the plates. If a metal sheet of thickness $\frac{2 d}{3}$ and of same area as plate is introduced between the plates, the capacitance of the capacitor becomes $C_{2}$. The ratio $\frac{C_{2}}{C_{1}}$ is:

1 $2: 1$
2 $4: 1$
3 $3: 1$
4 $1: 1$
Capacitance

165591 A big drop of radius $R$ is formed by 729 small drops of water of radius $r$, then the radius of each small drop will be:

1 $\frac{\mathrm{R}}{9}$
2 $\frac{\mathrm{R}}{900}$
3 $\frac{\mathrm{R}}{1800}$
4 $\frac{\mathrm{R}}{9000}$
Capacitance

165592 The earth is assumed to be a charged conducting sphere having volume ' $V$ ' and surface area ' $A$ '. The capacitance of the earth in free space is
( $\varepsilon_{0}=$ permittivity of free space)

1 $4 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
2 $8 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
3 $2 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
4 $12 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
Capacitance

165594 Assume each oil drop consists of a capacitance of $C$. If combine $n$ drops to form a bigger drop, then the capacitance of bigger drop $C^{\prime}$ would be

1 $\mathrm{C}^{\prime}=\frac{2 \mathrm{n}^{1 / 3}}{3} \mathrm{C}$
2 $\mathrm{C}^{\prime}=\frac{5 \mathrm{n}^{1 / 3}}{4} \mathrm{C}$
3 $\mathrm{C}^{\prime}=\frac{\mathrm{n}^{1 / 3}}{5} \mathrm{C}$
4 $C^{\prime}=C \cdot n^{1 / 3}$
Capacitance

165596 A capacitor of capacitance $10 \mu \mathrm{F}$ is charged to potential $50 \mathrm{~V}$ with a battery. The battery is now disconnected and an additional charge $200 \mu \mathrm{C}$ is given to the positive plate of the capacitor. The potential difference across the capacitor will be

1 $50 \mathrm{~V}$
2 $80 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $60 \mathrm{~V}$
Capacitance

165589 The distance between two plates of a capacitor is $d$ and its capacitance is $C_{1}$, when air is the medium between the plates. If a metal sheet of thickness $\frac{2 d}{3}$ and of same area as plate is introduced between the plates, the capacitance of the capacitor becomes $C_{2}$. The ratio $\frac{C_{2}}{C_{1}}$ is:

1 $2: 1$
2 $4: 1$
3 $3: 1$
4 $1: 1$
Capacitance

165591 A big drop of radius $R$ is formed by 729 small drops of water of radius $r$, then the radius of each small drop will be:

1 $\frac{\mathrm{R}}{9}$
2 $\frac{\mathrm{R}}{900}$
3 $\frac{\mathrm{R}}{1800}$
4 $\frac{\mathrm{R}}{9000}$
Capacitance

165592 The earth is assumed to be a charged conducting sphere having volume ' $V$ ' and surface area ' $A$ '. The capacitance of the earth in free space is
( $\varepsilon_{0}=$ permittivity of free space)

1 $4 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
2 $8 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
3 $2 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
4 $12 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
Capacitance

165594 Assume each oil drop consists of a capacitance of $C$. If combine $n$ drops to form a bigger drop, then the capacitance of bigger drop $C^{\prime}$ would be

1 $\mathrm{C}^{\prime}=\frac{2 \mathrm{n}^{1 / 3}}{3} \mathrm{C}$
2 $\mathrm{C}^{\prime}=\frac{5 \mathrm{n}^{1 / 3}}{4} \mathrm{C}$
3 $\mathrm{C}^{\prime}=\frac{\mathrm{n}^{1 / 3}}{5} \mathrm{C}$
4 $C^{\prime}=C \cdot n^{1 / 3}$
Capacitance

165596 A capacitor of capacitance $10 \mu \mathrm{F}$ is charged to potential $50 \mathrm{~V}$ with a battery. The battery is now disconnected and an additional charge $200 \mu \mathrm{C}$ is given to the positive plate of the capacitor. The potential difference across the capacitor will be

1 $50 \mathrm{~V}$
2 $80 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $60 \mathrm{~V}$
Capacitance

165589 The distance between two plates of a capacitor is $d$ and its capacitance is $C_{1}$, when air is the medium between the plates. If a metal sheet of thickness $\frac{2 d}{3}$ and of same area as plate is introduced between the plates, the capacitance of the capacitor becomes $C_{2}$. The ratio $\frac{C_{2}}{C_{1}}$ is:

1 $2: 1$
2 $4: 1$
3 $3: 1$
4 $1: 1$
Capacitance

165591 A big drop of radius $R$ is formed by 729 small drops of water of radius $r$, then the radius of each small drop will be:

1 $\frac{\mathrm{R}}{9}$
2 $\frac{\mathrm{R}}{900}$
3 $\frac{\mathrm{R}}{1800}$
4 $\frac{\mathrm{R}}{9000}$
Capacitance

165592 The earth is assumed to be a charged conducting sphere having volume ' $V$ ' and surface area ' $A$ '. The capacitance of the earth in free space is
( $\varepsilon_{0}=$ permittivity of free space)

1 $4 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
2 $8 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
3 $2 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
4 $12 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
Capacitance

165594 Assume each oil drop consists of a capacitance of $C$. If combine $n$ drops to form a bigger drop, then the capacitance of bigger drop $C^{\prime}$ would be

1 $\mathrm{C}^{\prime}=\frac{2 \mathrm{n}^{1 / 3}}{3} \mathrm{C}$
2 $\mathrm{C}^{\prime}=\frac{5 \mathrm{n}^{1 / 3}}{4} \mathrm{C}$
3 $\mathrm{C}^{\prime}=\frac{\mathrm{n}^{1 / 3}}{5} \mathrm{C}$
4 $C^{\prime}=C \cdot n^{1 / 3}$
Capacitance

165596 A capacitor of capacitance $10 \mu \mathrm{F}$ is charged to potential $50 \mathrm{~V}$ with a battery. The battery is now disconnected and an additional charge $200 \mu \mathrm{C}$ is given to the positive plate of the capacitor. The potential difference across the capacitor will be

1 $50 \mathrm{~V}$
2 $80 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $60 \mathrm{~V}$
Capacitance

165589 The distance between two plates of a capacitor is $d$ and its capacitance is $C_{1}$, when air is the medium between the plates. If a metal sheet of thickness $\frac{2 d}{3}$ and of same area as plate is introduced between the plates, the capacitance of the capacitor becomes $C_{2}$. The ratio $\frac{C_{2}}{C_{1}}$ is:

1 $2: 1$
2 $4: 1$
3 $3: 1$
4 $1: 1$
Capacitance

165591 A big drop of radius $R$ is formed by 729 small drops of water of radius $r$, then the radius of each small drop will be:

1 $\frac{\mathrm{R}}{9}$
2 $\frac{\mathrm{R}}{900}$
3 $\frac{\mathrm{R}}{1800}$
4 $\frac{\mathrm{R}}{9000}$
Capacitance

165592 The earth is assumed to be a charged conducting sphere having volume ' $V$ ' and surface area ' $A$ '. The capacitance of the earth in free space is
( $\varepsilon_{0}=$ permittivity of free space)

1 $4 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
2 $8 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
3 $2 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
4 $12 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
Capacitance

165594 Assume each oil drop consists of a capacitance of $C$. If combine $n$ drops to form a bigger drop, then the capacitance of bigger drop $C^{\prime}$ would be

1 $\mathrm{C}^{\prime}=\frac{2 \mathrm{n}^{1 / 3}}{3} \mathrm{C}$
2 $\mathrm{C}^{\prime}=\frac{5 \mathrm{n}^{1 / 3}}{4} \mathrm{C}$
3 $\mathrm{C}^{\prime}=\frac{\mathrm{n}^{1 / 3}}{5} \mathrm{C}$
4 $C^{\prime}=C \cdot n^{1 / 3}$
Capacitance

165596 A capacitor of capacitance $10 \mu \mathrm{F}$ is charged to potential $50 \mathrm{~V}$ with a battery. The battery is now disconnected and an additional charge $200 \mu \mathrm{C}$ is given to the positive plate of the capacitor. The potential difference across the capacitor will be

1 $50 \mathrm{~V}$
2 $80 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $60 \mathrm{~V}$
Capacitance

165589 The distance between two plates of a capacitor is $d$ and its capacitance is $C_{1}$, when air is the medium between the plates. If a metal sheet of thickness $\frac{2 d}{3}$ and of same area as plate is introduced between the plates, the capacitance of the capacitor becomes $C_{2}$. The ratio $\frac{C_{2}}{C_{1}}$ is:

1 $2: 1$
2 $4: 1$
3 $3: 1$
4 $1: 1$
Capacitance

165591 A big drop of radius $R$ is formed by 729 small drops of water of radius $r$, then the radius of each small drop will be:

1 $\frac{\mathrm{R}}{9}$
2 $\frac{\mathrm{R}}{900}$
3 $\frac{\mathrm{R}}{1800}$
4 $\frac{\mathrm{R}}{9000}$
Capacitance

165592 The earth is assumed to be a charged conducting sphere having volume ' $V$ ' and surface area ' $A$ '. The capacitance of the earth in free space is
( $\varepsilon_{0}=$ permittivity of free space)

1 $4 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
2 $8 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
3 $2 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
4 $12 \pi \varepsilon_{0} \frac{\mathrm{V}}{\mathrm{A}}$
Capacitance

165594 Assume each oil drop consists of a capacitance of $C$. If combine $n$ drops to form a bigger drop, then the capacitance of bigger drop $C^{\prime}$ would be

1 $\mathrm{C}^{\prime}=\frac{2 \mathrm{n}^{1 / 3}}{3} \mathrm{C}$
2 $\mathrm{C}^{\prime}=\frac{5 \mathrm{n}^{1 / 3}}{4} \mathrm{C}$
3 $\mathrm{C}^{\prime}=\frac{\mathrm{n}^{1 / 3}}{5} \mathrm{C}$
4 $C^{\prime}=C \cdot n^{1 / 3}$
Capacitance

165596 A capacitor of capacitance $10 \mu \mathrm{F}$ is charged to potential $50 \mathrm{~V}$ with a battery. The battery is now disconnected and an additional charge $200 \mu \mathrm{C}$ is given to the positive plate of the capacitor. The potential difference across the capacitor will be

1 $50 \mathrm{~V}$
2 $80 \mathrm{~V}$
3 $100 \mathrm{~V}$
4 $60 \mathrm{~V}$