Explanation:
A Let $S_{1}, \& S_{2}$ are sound sources placed along the diameter.

$\mathrm{S}_{1} \mathrm{~S}_{2}=4 \lambda$ (given)
Path difference, $\Delta \mathrm{x}=4 \lambda \sin \theta$
$\because$ For minima,$\quad \Delta \mathrm{x}=(2 \mathrm{n}+1) \frac{\lambda}{2}$
$\Rightarrow 4 \lambda \sin \theta=(2 \mathrm{n}+1) \frac{\lambda}{2}$
$\sin \theta=\left(\frac{2 \mathrm{n}+1}{8}\right)$
For $\mathrm{n}=0, \sin \theta=\frac{1}{8} \Rightarrow \theta=\sin ^{-1}\left(\frac{1}{8}\right)$
For $\mathrm{n}=1, \sin \theta=\frac{3}{8} \Rightarrow \theta=\sin ^{-1}\left(\frac{3}{8}\right)$
For $\mathrm{n}=2, \sin \theta=\frac{5}{8} \Rightarrow \theta \sin ^{-1}\left(\frac{5}{8}\right)$
For $\mathrm{n}=3, \sin \theta=\frac{7}{8} \Rightarrow \theta=\sin ^{-1}\left(\frac{7}{8}\right)$
For $\mathrm{n}=4, \sin \theta=\frac{9}{8}$ that is not possible because
$\sin \theta \leq 1$.
Therefore, in quarter circle, 4 minima are heard.
Hence, in entire circle (along the perimeter) total no. of minima will be 16 .