Reflection of Waves Strings
WAVES

172419 A transverse wave $Y=2 \sin (0.01 x+30 t)$ moves on a stretched string from one end to another end in $0.5 \mathrm{~s}$. If $x$ and $Y$ are in $\mathrm{cm}$ and $t$ in second, then the length of the string is

1 $20 \mathrm{~m}$
2 $15 \mathrm{~m}$
3 $10 \mathrm{~m}$
4 $5 \mathrm{~m}$
WAVES

172420 The fundamental frequency of a string stretched with a weight ' $M$ ' $\mathrm{kg}$ is ' $\mathrm{n}$ ' hertz. Keeping the vibrating length constant, the weight required to produce its octave is

1 $\mathrm{M}$
2 $4 \mathrm{M}$
3 $2 \mathrm{M}$
4 $8 \mathrm{M}$
WAVES

172421 A string of length ' $L$ ' and linear mass density ' $\mu$ ' has a fundamental frequency ' $n$ ' when stretched by tension ' $T$ '. The fundamental frequency of another string having double the length and double linear density, when same tension is applied is

1 $\frac{\mathrm{n}}{2}$
2 $\frac{\mathrm{n}}{2 \sqrt{2}}$
3 $\frac{\mathrm{n}}{\sqrt{2}}$
4 $2 \mathrm{n}$
WAVES

172422 The equation of stationary wave on a string clamped at both ends and vibrating in third harmonic is given by $y=0.5 \sin (0.314 x) \cos$ $(600 \pi t)$, where $x$ and $y$ are in $\mathrm{cm}$ and $t$ in second. The length of the vibrating string is $(\pi$ =3.14)

1 $15 \mathrm{~cm}$
2 $40 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $30 \mathrm{~cm}$
WAVES

172419 A transverse wave $Y=2 \sin (0.01 x+30 t)$ moves on a stretched string from one end to another end in $0.5 \mathrm{~s}$. If $x$ and $Y$ are in $\mathrm{cm}$ and $t$ in second, then the length of the string is

1 $20 \mathrm{~m}$
2 $15 \mathrm{~m}$
3 $10 \mathrm{~m}$
4 $5 \mathrm{~m}$
WAVES

172420 The fundamental frequency of a string stretched with a weight ' $M$ ' $\mathrm{kg}$ is ' $\mathrm{n}$ ' hertz. Keeping the vibrating length constant, the weight required to produce its octave is

1 $\mathrm{M}$
2 $4 \mathrm{M}$
3 $2 \mathrm{M}$
4 $8 \mathrm{M}$
WAVES

172421 A string of length ' $L$ ' and linear mass density ' $\mu$ ' has a fundamental frequency ' $n$ ' when stretched by tension ' $T$ '. The fundamental frequency of another string having double the length and double linear density, when same tension is applied is

1 $\frac{\mathrm{n}}{2}$
2 $\frac{\mathrm{n}}{2 \sqrt{2}}$
3 $\frac{\mathrm{n}}{\sqrt{2}}$
4 $2 \mathrm{n}$
WAVES

172422 The equation of stationary wave on a string clamped at both ends and vibrating in third harmonic is given by $y=0.5 \sin (0.314 x) \cos$ $(600 \pi t)$, where $x$ and $y$ are in $\mathrm{cm}$ and $t$ in second. The length of the vibrating string is $(\pi$ =3.14)

1 $15 \mathrm{~cm}$
2 $40 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $30 \mathrm{~cm}$
WAVES

172419 A transverse wave $Y=2 \sin (0.01 x+30 t)$ moves on a stretched string from one end to another end in $0.5 \mathrm{~s}$. If $x$ and $Y$ are in $\mathrm{cm}$ and $t$ in second, then the length of the string is

1 $20 \mathrm{~m}$
2 $15 \mathrm{~m}$
3 $10 \mathrm{~m}$
4 $5 \mathrm{~m}$
WAVES

172420 The fundamental frequency of a string stretched with a weight ' $M$ ' $\mathrm{kg}$ is ' $\mathrm{n}$ ' hertz. Keeping the vibrating length constant, the weight required to produce its octave is

1 $\mathrm{M}$
2 $4 \mathrm{M}$
3 $2 \mathrm{M}$
4 $8 \mathrm{M}$
WAVES

172421 A string of length ' $L$ ' and linear mass density ' $\mu$ ' has a fundamental frequency ' $n$ ' when stretched by tension ' $T$ '. The fundamental frequency of another string having double the length and double linear density, when same tension is applied is

1 $\frac{\mathrm{n}}{2}$
2 $\frac{\mathrm{n}}{2 \sqrt{2}}$
3 $\frac{\mathrm{n}}{\sqrt{2}}$
4 $2 \mathrm{n}$
WAVES

172422 The equation of stationary wave on a string clamped at both ends and vibrating in third harmonic is given by $y=0.5 \sin (0.314 x) \cos$ $(600 \pi t)$, where $x$ and $y$ are in $\mathrm{cm}$ and $t$ in second. The length of the vibrating string is $(\pi$ =3.14)

1 $15 \mathrm{~cm}$
2 $40 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $30 \mathrm{~cm}$
WAVES

172419 A transverse wave $Y=2 \sin (0.01 x+30 t)$ moves on a stretched string from one end to another end in $0.5 \mathrm{~s}$. If $x$ and $Y$ are in $\mathrm{cm}$ and $t$ in second, then the length of the string is

1 $20 \mathrm{~m}$
2 $15 \mathrm{~m}$
3 $10 \mathrm{~m}$
4 $5 \mathrm{~m}$
WAVES

172420 The fundamental frequency of a string stretched with a weight ' $M$ ' $\mathrm{kg}$ is ' $\mathrm{n}$ ' hertz. Keeping the vibrating length constant, the weight required to produce its octave is

1 $\mathrm{M}$
2 $4 \mathrm{M}$
3 $2 \mathrm{M}$
4 $8 \mathrm{M}$
WAVES

172421 A string of length ' $L$ ' and linear mass density ' $\mu$ ' has a fundamental frequency ' $n$ ' when stretched by tension ' $T$ '. The fundamental frequency of another string having double the length and double linear density, when same tension is applied is

1 $\frac{\mathrm{n}}{2}$
2 $\frac{\mathrm{n}}{2 \sqrt{2}}$
3 $\frac{\mathrm{n}}{\sqrt{2}}$
4 $2 \mathrm{n}$
WAVES

172422 The equation of stationary wave on a string clamped at both ends and vibrating in third harmonic is given by $y=0.5 \sin (0.314 x) \cos$ $(600 \pi t)$, where $x$ and $y$ are in $\mathrm{cm}$ and $t$ in second. The length of the vibrating string is $(\pi$ =3.14)

1 $15 \mathrm{~cm}$
2 $40 \mathrm{~cm}$
3 $10 \mathrm{~cm}$
4 $30 \mathrm{~cm}$