Super Position Principle of Wave
WAVES

172356 If two wave of intensities I and 4 I superpose, the ratio between maximum and minimum intensities is

1 $9: 1$
2 $5: 2$
3 $4: 3$
4 $3: 1$
5 $6: 1$
WAVES

172357 Two progressive waves $Y_{1}=\sin 2 \pi\left(\frac{t}{0.4}-\frac{x}{4}\right)$ and $Y_{2}=\sin 2 \pi\left(\frac{t}{0.4}+\frac{x}{4}\right)$ superpose to form a standing wave. $x, Y_{1}$ and $Y_{2}$ are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$

1 $2 \sqrt{2} \mathrm{~m}$
2 $2 \mathrm{~m}$
3 $\frac{1}{\sqrt{2}} \mathrm{~m}$
4 $\sqrt{2} \mathrm{~m}$
WAVES

172358 Two waves given as $y_{1}=10 \sin \omega t \mathrm{~cm}$ and $y_{2}=10 \sin \left(\omega t+\frac{\pi}{3}\right) \quad \mathrm{cm}$ are superimposed. What is the amplitude of the resultant wave? $\left[\cos \frac{\pi}{3}=\frac{1}{2}\right]$

1 $10 \sqrt{2} \mathrm{~cm}$
2 $5 \sqrt{3} \mathrm{~cm}$
3 $10 \sqrt{3} \mathrm{~cm}$
4 $10 \mathrm{~cm}$
WAVES

172359 The two waves are represented by $Y_{1}=10^{-2} \sin \left[50 t+\frac{x}{25}+0.3\right] \mathrm{m}$ and $Y_{2}=10^{-2} \cos \left[50 t+\frac{x}{25}\right] m$ where $x$ is in metre and time in second. The phase difference between the two waves is nearly

1 $1.22 \mathrm{rad}$
2 $1.05 \mathrm{rad}$
3 $1.15 \mathrm{rad}$
4 $1.27 \mathrm{rad}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172356 If two wave of intensities I and 4 I superpose, the ratio between maximum and minimum intensities is

1 $9: 1$
2 $5: 2$
3 $4: 3$
4 $3: 1$
5 $6: 1$
WAVES

172357 Two progressive waves $Y_{1}=\sin 2 \pi\left(\frac{t}{0.4}-\frac{x}{4}\right)$ and $Y_{2}=\sin 2 \pi\left(\frac{t}{0.4}+\frac{x}{4}\right)$ superpose to form a standing wave. $x, Y_{1}$ and $Y_{2}$ are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$

1 $2 \sqrt{2} \mathrm{~m}$
2 $2 \mathrm{~m}$
3 $\frac{1}{\sqrt{2}} \mathrm{~m}$
4 $\sqrt{2} \mathrm{~m}$
WAVES

172358 Two waves given as $y_{1}=10 \sin \omega t \mathrm{~cm}$ and $y_{2}=10 \sin \left(\omega t+\frac{\pi}{3}\right) \quad \mathrm{cm}$ are superimposed. What is the amplitude of the resultant wave? $\left[\cos \frac{\pi}{3}=\frac{1}{2}\right]$

1 $10 \sqrt{2} \mathrm{~cm}$
2 $5 \sqrt{3} \mathrm{~cm}$
3 $10 \sqrt{3} \mathrm{~cm}$
4 $10 \mathrm{~cm}$
WAVES

172359 The two waves are represented by $Y_{1}=10^{-2} \sin \left[50 t+\frac{x}{25}+0.3\right] \mathrm{m}$ and $Y_{2}=10^{-2} \cos \left[50 t+\frac{x}{25}\right] m$ where $x$ is in metre and time in second. The phase difference between the two waves is nearly

1 $1.22 \mathrm{rad}$
2 $1.05 \mathrm{rad}$
3 $1.15 \mathrm{rad}$
4 $1.27 \mathrm{rad}$
WAVES

172356 If two wave of intensities I and 4 I superpose, the ratio between maximum and minimum intensities is

1 $9: 1$
2 $5: 2$
3 $4: 3$
4 $3: 1$
5 $6: 1$
WAVES

172357 Two progressive waves $Y_{1}=\sin 2 \pi\left(\frac{t}{0.4}-\frac{x}{4}\right)$ and $Y_{2}=\sin 2 \pi\left(\frac{t}{0.4}+\frac{x}{4}\right)$ superpose to form a standing wave. $x, Y_{1}$ and $Y_{2}$ are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$

1 $2 \sqrt{2} \mathrm{~m}$
2 $2 \mathrm{~m}$
3 $\frac{1}{\sqrt{2}} \mathrm{~m}$
4 $\sqrt{2} \mathrm{~m}$
WAVES

172358 Two waves given as $y_{1}=10 \sin \omega t \mathrm{~cm}$ and $y_{2}=10 \sin \left(\omega t+\frac{\pi}{3}\right) \quad \mathrm{cm}$ are superimposed. What is the amplitude of the resultant wave? $\left[\cos \frac{\pi}{3}=\frac{1}{2}\right]$

1 $10 \sqrt{2} \mathrm{~cm}$
2 $5 \sqrt{3} \mathrm{~cm}$
3 $10 \sqrt{3} \mathrm{~cm}$
4 $10 \mathrm{~cm}$
WAVES

172359 The two waves are represented by $Y_{1}=10^{-2} \sin \left[50 t+\frac{x}{25}+0.3\right] \mathrm{m}$ and $Y_{2}=10^{-2} \cos \left[50 t+\frac{x}{25}\right] m$ where $x$ is in metre and time in second. The phase difference between the two waves is nearly

1 $1.22 \mathrm{rad}$
2 $1.05 \mathrm{rad}$
3 $1.15 \mathrm{rad}$
4 $1.27 \mathrm{rad}$
WAVES

172356 If two wave of intensities I and 4 I superpose, the ratio between maximum and minimum intensities is

1 $9: 1$
2 $5: 2$
3 $4: 3$
4 $3: 1$
5 $6: 1$
WAVES

172357 Two progressive waves $Y_{1}=\sin 2 \pi\left(\frac{t}{0.4}-\frac{x}{4}\right)$ and $Y_{2}=\sin 2 \pi\left(\frac{t}{0.4}+\frac{x}{4}\right)$ superpose to form a standing wave. $x, Y_{1}$ and $Y_{2}$ are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$

1 $2 \sqrt{2} \mathrm{~m}$
2 $2 \mathrm{~m}$
3 $\frac{1}{\sqrt{2}} \mathrm{~m}$
4 $\sqrt{2} \mathrm{~m}$
WAVES

172358 Two waves given as $y_{1}=10 \sin \omega t \mathrm{~cm}$ and $y_{2}=10 \sin \left(\omega t+\frac{\pi}{3}\right) \quad \mathrm{cm}$ are superimposed. What is the amplitude of the resultant wave? $\left[\cos \frac{\pi}{3}=\frac{1}{2}\right]$

1 $10 \sqrt{2} \mathrm{~cm}$
2 $5 \sqrt{3} \mathrm{~cm}$
3 $10 \sqrt{3} \mathrm{~cm}$
4 $10 \mathrm{~cm}$
WAVES

172359 The two waves are represented by $Y_{1}=10^{-2} \sin \left[50 t+\frac{x}{25}+0.3\right] \mathrm{m}$ and $Y_{2}=10^{-2} \cos \left[50 t+\frac{x}{25}\right] m$ where $x$ is in metre and time in second. The phase difference between the two waves is nearly

1 $1.22 \mathrm{rad}$
2 $1.05 \mathrm{rad}$
3 $1.15 \mathrm{rad}$
4 $1.27 \mathrm{rad}$