172357 Two progressive waves $Y_{1}=\sin 2 \pi\left(\frac{t}{0.4}-\frac{x}{4}\right)$ and $Y_{2}=\sin 2 \pi\left(\frac{t}{0.4}+\frac{x}{4}\right)$ superpose to form a standing wave. $x, Y_{1}$ and $Y_{2}$ are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$
172357 Two progressive waves $Y_{1}=\sin 2 \pi\left(\frac{t}{0.4}-\frac{x}{4}\right)$ and $Y_{2}=\sin 2 \pi\left(\frac{t}{0.4}+\frac{x}{4}\right)$ superpose to form a standing wave. $x, Y_{1}$ and $Y_{2}$ are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$
172357 Two progressive waves $Y_{1}=\sin 2 \pi\left(\frac{t}{0.4}-\frac{x}{4}\right)$ and $Y_{2}=\sin 2 \pi\left(\frac{t}{0.4}+\frac{x}{4}\right)$ superpose to form a standing wave. $x, Y_{1}$ and $Y_{2}$ are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$
172357 Two progressive waves $Y_{1}=\sin 2 \pi\left(\frac{t}{0.4}-\frac{x}{4}\right)$ and $Y_{2}=\sin 2 \pi\left(\frac{t}{0.4}+\frac{x}{4}\right)$ superpose to form a standing wave. $x, Y_{1}$ and $Y_{2}$ are in SI system. Amplitude of the particle at $x=0.5 \mathrm{~m}$ is $\left[\sin 45^{\circ}=\cos 45^{\circ}=\frac{1}{\sqrt{2}}\right]$