Wave and Wave characteristics
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172307 Wave theory cannot explain the phenomena of

1 A and B
2 B and D
3 C and D
4 D and A
WAVES

172309 Equation of a stationary wave is given by:

1 $\mathrm{y}=\mathrm{A} \sin \mathrm{k}(x=\mathrm{vi})$
2 $\mathrm{y}=2 \mathrm{~A} \sin \omega \mathrm{t} \cos \mathrm{kx}$
3 $y=A \cos 2 \pi\left(\frac{k x}{\lambda}-\frac{t}{T}\right)$
4 $y=A \cos \frac{2 \pi v t}{\lambda}$
WAVES

172310 Two waves of same frequency and intensity superimpose on each other in opposite phases. After the superposition, the intensity and frequency of waves will

1 increase
2 decrease
3 remain constant
4 become zero
WAVES

172333 A uniform rope of mass $0.1 \mathrm{~kg}$ and length 2.45 $m$ hangs from a ceiling. The time taken by a transverse wave to travel the full length of the rope is

1 $1.2 \mathrm{~s}$
2 $1.0 \mathrm{~s}$
3 $2.2 \mathrm{~s}$
4 $3.1 \mathrm{~s}$
WAVES

172307 Wave theory cannot explain the phenomena of

1 A and B
2 B and D
3 C and D
4 D and A
WAVES

172309 Equation of a stationary wave is given by:

1 $\mathrm{y}=\mathrm{A} \sin \mathrm{k}(x=\mathrm{vi})$
2 $\mathrm{y}=2 \mathrm{~A} \sin \omega \mathrm{t} \cos \mathrm{kx}$
3 $y=A \cos 2 \pi\left(\frac{k x}{\lambda}-\frac{t}{T}\right)$
4 $y=A \cos \frac{2 \pi v t}{\lambda}$
WAVES

172310 Two waves of same frequency and intensity superimpose on each other in opposite phases. After the superposition, the intensity and frequency of waves will

1 increase
2 decrease
3 remain constant
4 become zero
WAVES

172333 A uniform rope of mass $0.1 \mathrm{~kg}$ and length 2.45 $m$ hangs from a ceiling. The time taken by a transverse wave to travel the full length of the rope is

1 $1.2 \mathrm{~s}$
2 $1.0 \mathrm{~s}$
3 $2.2 \mathrm{~s}$
4 $3.1 \mathrm{~s}$
WAVES

172307 Wave theory cannot explain the phenomena of

1 A and B
2 B and D
3 C and D
4 D and A
WAVES

172309 Equation of a stationary wave is given by:

1 $\mathrm{y}=\mathrm{A} \sin \mathrm{k}(x=\mathrm{vi})$
2 $\mathrm{y}=2 \mathrm{~A} \sin \omega \mathrm{t} \cos \mathrm{kx}$
3 $y=A \cos 2 \pi\left(\frac{k x}{\lambda}-\frac{t}{T}\right)$
4 $y=A \cos \frac{2 \pi v t}{\lambda}$
WAVES

172310 Two waves of same frequency and intensity superimpose on each other in opposite phases. After the superposition, the intensity and frequency of waves will

1 increase
2 decrease
3 remain constant
4 become zero
WAVES

172333 A uniform rope of mass $0.1 \mathrm{~kg}$ and length 2.45 $m$ hangs from a ceiling. The time taken by a transverse wave to travel the full length of the rope is

1 $1.2 \mathrm{~s}$
2 $1.0 \mathrm{~s}$
3 $2.2 \mathrm{~s}$
4 $3.1 \mathrm{~s}$
WAVES

172307 Wave theory cannot explain the phenomena of

1 A and B
2 B and D
3 C and D
4 D and A
WAVES

172309 Equation of a stationary wave is given by:

1 $\mathrm{y}=\mathrm{A} \sin \mathrm{k}(x=\mathrm{vi})$
2 $\mathrm{y}=2 \mathrm{~A} \sin \omega \mathrm{t} \cos \mathrm{kx}$
3 $y=A \cos 2 \pi\left(\frac{k x}{\lambda}-\frac{t}{T}\right)$
4 $y=A \cos \frac{2 \pi v t}{\lambda}$
WAVES

172310 Two waves of same frequency and intensity superimpose on each other in opposite phases. After the superposition, the intensity and frequency of waves will

1 increase
2 decrease
3 remain constant
4 become zero
WAVES

172333 A uniform rope of mass $0.1 \mathrm{~kg}$ and length 2.45 $m$ hangs from a ceiling. The time taken by a transverse wave to travel the full length of the rope is

1 $1.2 \mathrm{~s}$
2 $1.0 \mathrm{~s}$
3 $2.2 \mathrm{~s}$
4 $3.1 \mathrm{~s}$