Wave and Wave characteristics
WAVES

172282 Among the following equations, which one represents the spherical progressive wave?

1 $y=r \sin \omega t$
2 $y=\frac{a}{r} \sin (\omega t-k x)$
3 $y=\frac{a}{\sqrt{r}} \sin (\omega t-k x)$
4 $y=\sqrt{\frac{a}{r}} \sin (\omega t-k x)$
WAVES

172286 Which of the following equations represents a wave travelling along $y$-axis?

1 $y=A \sin (k x-\omega t)$
2 $x=A \sin (k y-\omega t)$
3 $y=A \sin k y \cos \omega t$
4 $y=A \cos k y \sin \omega t$
WAVES

172294 Stationary wave is represented by $Y=A$ sin $(100 \mathrm{t}) \cos (0.01 x)$ where $Y$ and $A$ are in $\mathbf{m m}, t$ in sec. and $x$ in $m$. The velocity of stationary wave is

1 $1 \mathrm{~m} / \mathrm{s}$
2 $10^{3} \mathrm{~m} / \mathrm{s}$
3 $10^{4} \mathrm{~m} / \mathrm{s}$
4 Not derivable
WAVES

172296 Progressive waves are represented by the equation
$\mathbf{y}_{1}=\mathbf{a} \sin (\omega t-x) \text { and }$
$\mathbf{y}_{2}=b \cos (\omega t-x)$
The phase difference between waves is

1 $0^{\circ}$
2 $45^{\circ}$
3 $90^{\circ}$
4 $180^{\circ}$
WAVES

172282 Among the following equations, which one represents the spherical progressive wave?

1 $y=r \sin \omega t$
2 $y=\frac{a}{r} \sin (\omega t-k x)$
3 $y=\frac{a}{\sqrt{r}} \sin (\omega t-k x)$
4 $y=\sqrt{\frac{a}{r}} \sin (\omega t-k x)$
WAVES

172286 Which of the following equations represents a wave travelling along $y$-axis?

1 $y=A \sin (k x-\omega t)$
2 $x=A \sin (k y-\omega t)$
3 $y=A \sin k y \cos \omega t$
4 $y=A \cos k y \sin \omega t$
WAVES

172294 Stationary wave is represented by $Y=A$ sin $(100 \mathrm{t}) \cos (0.01 x)$ where $Y$ and $A$ are in $\mathbf{m m}, t$ in sec. and $x$ in $m$. The velocity of stationary wave is

1 $1 \mathrm{~m} / \mathrm{s}$
2 $10^{3} \mathrm{~m} / \mathrm{s}$
3 $10^{4} \mathrm{~m} / \mathrm{s}$
4 Not derivable
WAVES

172296 Progressive waves are represented by the equation
$\mathbf{y}_{1}=\mathbf{a} \sin (\omega t-x) \text { and }$
$\mathbf{y}_{2}=b \cos (\omega t-x)$
The phase difference between waves is

1 $0^{\circ}$
2 $45^{\circ}$
3 $90^{\circ}$
4 $180^{\circ}$
WAVES

172282 Among the following equations, which one represents the spherical progressive wave?

1 $y=r \sin \omega t$
2 $y=\frac{a}{r} \sin (\omega t-k x)$
3 $y=\frac{a}{\sqrt{r}} \sin (\omega t-k x)$
4 $y=\sqrt{\frac{a}{r}} \sin (\omega t-k x)$
WAVES

172286 Which of the following equations represents a wave travelling along $y$-axis?

1 $y=A \sin (k x-\omega t)$
2 $x=A \sin (k y-\omega t)$
3 $y=A \sin k y \cos \omega t$
4 $y=A \cos k y \sin \omega t$
WAVES

172294 Stationary wave is represented by $Y=A$ sin $(100 \mathrm{t}) \cos (0.01 x)$ where $Y$ and $A$ are in $\mathbf{m m}, t$ in sec. and $x$ in $m$. The velocity of stationary wave is

1 $1 \mathrm{~m} / \mathrm{s}$
2 $10^{3} \mathrm{~m} / \mathrm{s}$
3 $10^{4} \mathrm{~m} / \mathrm{s}$
4 Not derivable
WAVES

172296 Progressive waves are represented by the equation
$\mathbf{y}_{1}=\mathbf{a} \sin (\omega t-x) \text { and }$
$\mathbf{y}_{2}=b \cos (\omega t-x)$
The phase difference between waves is

1 $0^{\circ}$
2 $45^{\circ}$
3 $90^{\circ}$
4 $180^{\circ}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
WAVES

172282 Among the following equations, which one represents the spherical progressive wave?

1 $y=r \sin \omega t$
2 $y=\frac{a}{r} \sin (\omega t-k x)$
3 $y=\frac{a}{\sqrt{r}} \sin (\omega t-k x)$
4 $y=\sqrt{\frac{a}{r}} \sin (\omega t-k x)$
WAVES

172286 Which of the following equations represents a wave travelling along $y$-axis?

1 $y=A \sin (k x-\omega t)$
2 $x=A \sin (k y-\omega t)$
3 $y=A \sin k y \cos \omega t$
4 $y=A \cos k y \sin \omega t$
WAVES

172294 Stationary wave is represented by $Y=A$ sin $(100 \mathrm{t}) \cos (0.01 x)$ where $Y$ and $A$ are in $\mathbf{m m}, t$ in sec. and $x$ in $m$. The velocity of stationary wave is

1 $1 \mathrm{~m} / \mathrm{s}$
2 $10^{3} \mathrm{~m} / \mathrm{s}$
3 $10^{4} \mathrm{~m} / \mathrm{s}$
4 Not derivable
WAVES

172296 Progressive waves are represented by the equation
$\mathbf{y}_{1}=\mathbf{a} \sin (\omega t-x) \text { and }$
$\mathbf{y}_{2}=b \cos (\omega t-x)$
The phase difference between waves is

1 $0^{\circ}$
2 $45^{\circ}$
3 $90^{\circ}$
4 $180^{\circ}$