Wave and Wave characteristics
WAVES

172313 From a wave equation $y=0.5 \sin \frac{2 \pi}{3.2}(64 t-x)$, the frequency of the wave is

1 $5 \mathrm{~Hz}$
2 $15 \mathrm{~Hz}$
3 $20 \mathrm{~Hz}$
4 $25 \mathrm{~Hz}$
WAVES

172315 The transverse wave represented by the equation $y=4 \sin \frac{\pi}{6} \sin (3 x-15 t)$ has

1 Amplitude $=4 \pi$
2 Wavelength $=\frac{4 \pi}{3}$
3 Speed of Propagation $=5$
4 Period $=\frac{\pi}{15}$
WAVES

172316 The speed of a wave in a medium is $760 \mathrm{~m} / \mathrm{s}$. If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is

1 $13.3 \mathrm{~m}$
2 $25.3 \mathrm{~m}$
3 $41.5 \mathrm{~m}$
4 $57.2 \mathrm{~m}$
WAVES

172181 The wave described by $y=0.35 \sin (2 \pi t-10 \pi x)$, where $x$ and $y$ are in meter and $t$ in second, is a wave travelling along the

1 negative $x$ - direction with amplitude $0.35 \mathrm{~m}$ and wavelength $\lambda=0.5 \mathrm{~m}$
2 positive $\mathrm{x}$-direction with frequency $1 \mathrm{~Hz}$ and wavelength $\lambda=0.2 \mathrm{~m}$
3 positive $\mathrm{x}$-direction with frequency $1 \mathrm{~Hz}$ and amplitude $3.5 \mathrm{~m}$
4 negative $\mathrm{x}$-direction with frequency $\pi \mathrm{Hz}$ and wavelength $\lambda=0.5 \mathrm{~m}$
WAVES

172313 From a wave equation $y=0.5 \sin \frac{2 \pi}{3.2}(64 t-x)$, the frequency of the wave is

1 $5 \mathrm{~Hz}$
2 $15 \mathrm{~Hz}$
3 $20 \mathrm{~Hz}$
4 $25 \mathrm{~Hz}$
WAVES

172315 The transverse wave represented by the equation $y=4 \sin \frac{\pi}{6} \sin (3 x-15 t)$ has

1 Amplitude $=4 \pi$
2 Wavelength $=\frac{4 \pi}{3}$
3 Speed of Propagation $=5$
4 Period $=\frac{\pi}{15}$
WAVES

172316 The speed of a wave in a medium is $760 \mathrm{~m} / \mathrm{s}$. If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is

1 $13.3 \mathrm{~m}$
2 $25.3 \mathrm{~m}$
3 $41.5 \mathrm{~m}$
4 $57.2 \mathrm{~m}$
WAVES

172181 The wave described by $y=0.35 \sin (2 \pi t-10 \pi x)$, where $x$ and $y$ are in meter and $t$ in second, is a wave travelling along the

1 negative $x$ - direction with amplitude $0.35 \mathrm{~m}$ and wavelength $\lambda=0.5 \mathrm{~m}$
2 positive $\mathrm{x}$-direction with frequency $1 \mathrm{~Hz}$ and wavelength $\lambda=0.2 \mathrm{~m}$
3 positive $\mathrm{x}$-direction with frequency $1 \mathrm{~Hz}$ and amplitude $3.5 \mathrm{~m}$
4 negative $\mathrm{x}$-direction with frequency $\pi \mathrm{Hz}$ and wavelength $\lambda=0.5 \mathrm{~m}$
WAVES

172313 From a wave equation $y=0.5 \sin \frac{2 \pi}{3.2}(64 t-x)$, the frequency of the wave is

1 $5 \mathrm{~Hz}$
2 $15 \mathrm{~Hz}$
3 $20 \mathrm{~Hz}$
4 $25 \mathrm{~Hz}$
WAVES

172315 The transverse wave represented by the equation $y=4 \sin \frac{\pi}{6} \sin (3 x-15 t)$ has

1 Amplitude $=4 \pi$
2 Wavelength $=\frac{4 \pi}{3}$
3 Speed of Propagation $=5$
4 Period $=\frac{\pi}{15}$
WAVES

172316 The speed of a wave in a medium is $760 \mathrm{~m} / \mathrm{s}$. If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is

1 $13.3 \mathrm{~m}$
2 $25.3 \mathrm{~m}$
3 $41.5 \mathrm{~m}$
4 $57.2 \mathrm{~m}$
WAVES

172181 The wave described by $y=0.35 \sin (2 \pi t-10 \pi x)$, where $x$ and $y$ are in meter and $t$ in second, is a wave travelling along the

1 negative $x$ - direction with amplitude $0.35 \mathrm{~m}$ and wavelength $\lambda=0.5 \mathrm{~m}$
2 positive $\mathrm{x}$-direction with frequency $1 \mathrm{~Hz}$ and wavelength $\lambda=0.2 \mathrm{~m}$
3 positive $\mathrm{x}$-direction with frequency $1 \mathrm{~Hz}$ and amplitude $3.5 \mathrm{~m}$
4 negative $\mathrm{x}$-direction with frequency $\pi \mathrm{Hz}$ and wavelength $\lambda=0.5 \mathrm{~m}$
WAVES

172313 From a wave equation $y=0.5 \sin \frac{2 \pi}{3.2}(64 t-x)$, the frequency of the wave is

1 $5 \mathrm{~Hz}$
2 $15 \mathrm{~Hz}$
3 $20 \mathrm{~Hz}$
4 $25 \mathrm{~Hz}$
WAVES

172315 The transverse wave represented by the equation $y=4 \sin \frac{\pi}{6} \sin (3 x-15 t)$ has

1 Amplitude $=4 \pi$
2 Wavelength $=\frac{4 \pi}{3}$
3 Speed of Propagation $=5$
4 Period $=\frac{\pi}{15}$
WAVES

172316 The speed of a wave in a medium is $760 \mathrm{~m} / \mathrm{s}$. If 3600 waves are passing through a point in the medium in 2 min, then their wavelength is

1 $13.3 \mathrm{~m}$
2 $25.3 \mathrm{~m}$
3 $41.5 \mathrm{~m}$
4 $57.2 \mathrm{~m}$
WAVES

172181 The wave described by $y=0.35 \sin (2 \pi t-10 \pi x)$, where $x$ and $y$ are in meter and $t$ in second, is a wave travelling along the

1 negative $x$ - direction with amplitude $0.35 \mathrm{~m}$ and wavelength $\lambda=0.5 \mathrm{~m}$
2 positive $\mathrm{x}$-direction with frequency $1 \mathrm{~Hz}$ and wavelength $\lambda=0.2 \mathrm{~m}$
3 positive $\mathrm{x}$-direction with frequency $1 \mathrm{~Hz}$ and amplitude $3.5 \mathrm{~m}$
4 negative $\mathrm{x}$-direction with frequency $\pi \mathrm{Hz}$ and wavelength $\lambda=0.5 \mathrm{~m}$