Wave and Wave characteristics
WAVES

172147 A particle executes S.H.M. of amplitude $A$ along $x$-axis. At $t=0$, the position of the particle is $x=\frac{A}{2}$ and it moves along positive $x$ axis the displacement of particle in time $t$. $x=A \sin (\omega t+\delta)$, then the value $\delta$ will be:

1 $\frac{\pi}{6}$
2 $\frac{\pi}{3}$
3 $\frac{\pi}{4}$
4 $\frac{\pi}{2}$
WAVES

172148 For a periodic motion represented by the equation $y=\sin \omega t+\cos \omega t$
The amplitude of the motion is

1 0.5
2 $\sqrt{2}$
3 1
4 2
WAVES

172149 Which of the following wave has the largest wave speed?

1 $y(x, t)=2 \sin (2 x-2 t)$
2 $y(x, t)=3 \sin (2 x-3 t)$
3 $y(x, t)=2 \sin (3 x-2 t)$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=3 \sin (5 \mathrm{x}-2 \mathrm{t})$
WAVES

172150 A longitudinal wave is represented by $x=10$ $\sin 2 \pi\left(n t-\frac{x}{\lambda}\right) \mathbf{c m}$. The maximum particle velocity will be four times the wave velocity if the determined value of wavelength is equal to:

1 $2 \pi$
2 $5 \pi$
3 $\pi$
4 $\frac{5 \pi}{2}$
WAVES

172151 A transverse wave is represented by $\mathrm{y}=2 \sin$ $(\omega t-k x) \mathrm{cm}$. The value of wavelength (in $\mathrm{cm}$ ) for which the wave velocity becomes equal to the maximum particle velocity, will be;

1 $4 \pi$
2 $2 \pi$
3 $\pi$
4 2
WAVES

172147 A particle executes S.H.M. of amplitude $A$ along $x$-axis. At $t=0$, the position of the particle is $x=\frac{A}{2}$ and it moves along positive $x$ axis the displacement of particle in time $t$. $x=A \sin (\omega t+\delta)$, then the value $\delta$ will be:

1 $\frac{\pi}{6}$
2 $\frac{\pi}{3}$
3 $\frac{\pi}{4}$
4 $\frac{\pi}{2}$
WAVES

172148 For a periodic motion represented by the equation $y=\sin \omega t+\cos \omega t$
The amplitude of the motion is

1 0.5
2 $\sqrt{2}$
3 1
4 2
WAVES

172149 Which of the following wave has the largest wave speed?

1 $y(x, t)=2 \sin (2 x-2 t)$
2 $y(x, t)=3 \sin (2 x-3 t)$
3 $y(x, t)=2 \sin (3 x-2 t)$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=3 \sin (5 \mathrm{x}-2 \mathrm{t})$
WAVES

172150 A longitudinal wave is represented by $x=10$ $\sin 2 \pi\left(n t-\frac{x}{\lambda}\right) \mathbf{c m}$. The maximum particle velocity will be four times the wave velocity if the determined value of wavelength is equal to:

1 $2 \pi$
2 $5 \pi$
3 $\pi$
4 $\frac{5 \pi}{2}$
WAVES

172151 A transverse wave is represented by $\mathrm{y}=2 \sin$ $(\omega t-k x) \mathrm{cm}$. The value of wavelength (in $\mathrm{cm}$ ) for which the wave velocity becomes equal to the maximum particle velocity, will be;

1 $4 \pi$
2 $2 \pi$
3 $\pi$
4 2
WAVES

172147 A particle executes S.H.M. of amplitude $A$ along $x$-axis. At $t=0$, the position of the particle is $x=\frac{A}{2}$ and it moves along positive $x$ axis the displacement of particle in time $t$. $x=A \sin (\omega t+\delta)$, then the value $\delta$ will be:

1 $\frac{\pi}{6}$
2 $\frac{\pi}{3}$
3 $\frac{\pi}{4}$
4 $\frac{\pi}{2}$
WAVES

172148 For a periodic motion represented by the equation $y=\sin \omega t+\cos \omega t$
The amplitude of the motion is

1 0.5
2 $\sqrt{2}$
3 1
4 2
WAVES

172149 Which of the following wave has the largest wave speed?

1 $y(x, t)=2 \sin (2 x-2 t)$
2 $y(x, t)=3 \sin (2 x-3 t)$
3 $y(x, t)=2 \sin (3 x-2 t)$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=3 \sin (5 \mathrm{x}-2 \mathrm{t})$
WAVES

172150 A longitudinal wave is represented by $x=10$ $\sin 2 \pi\left(n t-\frac{x}{\lambda}\right) \mathbf{c m}$. The maximum particle velocity will be four times the wave velocity if the determined value of wavelength is equal to:

1 $2 \pi$
2 $5 \pi$
3 $\pi$
4 $\frac{5 \pi}{2}$
WAVES

172151 A transverse wave is represented by $\mathrm{y}=2 \sin$ $(\omega t-k x) \mathrm{cm}$. The value of wavelength (in $\mathrm{cm}$ ) for which the wave velocity becomes equal to the maximum particle velocity, will be;

1 $4 \pi$
2 $2 \pi$
3 $\pi$
4 2
WAVES

172147 A particle executes S.H.M. of amplitude $A$ along $x$-axis. At $t=0$, the position of the particle is $x=\frac{A}{2}$ and it moves along positive $x$ axis the displacement of particle in time $t$. $x=A \sin (\omega t+\delta)$, then the value $\delta$ will be:

1 $\frac{\pi}{6}$
2 $\frac{\pi}{3}$
3 $\frac{\pi}{4}$
4 $\frac{\pi}{2}$
WAVES

172148 For a periodic motion represented by the equation $y=\sin \omega t+\cos \omega t$
The amplitude of the motion is

1 0.5
2 $\sqrt{2}$
3 1
4 2
WAVES

172149 Which of the following wave has the largest wave speed?

1 $y(x, t)=2 \sin (2 x-2 t)$
2 $y(x, t)=3 \sin (2 x-3 t)$
3 $y(x, t)=2 \sin (3 x-2 t)$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=3 \sin (5 \mathrm{x}-2 \mathrm{t})$
WAVES

172150 A longitudinal wave is represented by $x=10$ $\sin 2 \pi\left(n t-\frac{x}{\lambda}\right) \mathbf{c m}$. The maximum particle velocity will be four times the wave velocity if the determined value of wavelength is equal to:

1 $2 \pi$
2 $5 \pi$
3 $\pi$
4 $\frac{5 \pi}{2}$
WAVES

172151 A transverse wave is represented by $\mathrm{y}=2 \sin$ $(\omega t-k x) \mathrm{cm}$. The value of wavelength (in $\mathrm{cm}$ ) for which the wave velocity becomes equal to the maximum particle velocity, will be;

1 $4 \pi$
2 $2 \pi$
3 $\pi$
4 2
WAVES

172147 A particle executes S.H.M. of amplitude $A$ along $x$-axis. At $t=0$, the position of the particle is $x=\frac{A}{2}$ and it moves along positive $x$ axis the displacement of particle in time $t$. $x=A \sin (\omega t+\delta)$, then the value $\delta$ will be:

1 $\frac{\pi}{6}$
2 $\frac{\pi}{3}$
3 $\frac{\pi}{4}$
4 $\frac{\pi}{2}$
WAVES

172148 For a periodic motion represented by the equation $y=\sin \omega t+\cos \omega t$
The amplitude of the motion is

1 0.5
2 $\sqrt{2}$
3 1
4 2
WAVES

172149 Which of the following wave has the largest wave speed?

1 $y(x, t)=2 \sin (2 x-2 t)$
2 $y(x, t)=3 \sin (2 x-3 t)$
3 $y(x, t)=2 \sin (3 x-2 t)$
4 $\mathrm{y}(\mathrm{x}, \mathrm{t})=3 \sin (5 \mathrm{x}-2 \mathrm{t})$
WAVES

172150 A longitudinal wave is represented by $x=10$ $\sin 2 \pi\left(n t-\frac{x}{\lambda}\right) \mathbf{c m}$. The maximum particle velocity will be four times the wave velocity if the determined value of wavelength is equal to:

1 $2 \pi$
2 $5 \pi$
3 $\pi$
4 $\frac{5 \pi}{2}$
WAVES

172151 A transverse wave is represented by $\mathrm{y}=2 \sin$ $(\omega t-k x) \mathrm{cm}$. The value of wavelength (in $\mathrm{cm}$ ) for which the wave velocity becomes equal to the maximum particle velocity, will be;

1 $4 \pi$
2 $2 \pi$
3 $\pi$
4 2