Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139274 R.M.S velocity of oxygen molecules at N.T.P is $0.5 \mathrm{~km} / \mathrm{s}$. The R.M.S velocity for the hydrogen molecule at N.T.P is

1 $4 \mathrm{~km} / \mathrm{s}$
2 $2 \mathrm{~km} / \mathrm{s}$
3 $3 \mathrm{~km} / \mathrm{s}$
4 $1 \mathrm{~km} / \mathrm{s}$
Kinetic Theory of Gases

139275 The rms velocity of a gas at $T^{\circ} \mathrm{C}$ is double the value at $27^{\circ} \mathrm{C}$. The temperature $\mathrm{T}$ of the gas in ${ }^{0} \mathrm{C}$ is (assume that the pressure remains constant)

1 927
2 820
3 1000
4 195
Kinetic Theory of Gases

139279 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139280 Pressure of an ideal gas is increased by keeping temperature constant. What is effect on kinetic energy of molecules?

1 Increase
2 Decrease
3 No change
4 Cannot be determined
Kinetic Theory of Gases

139281 When temperature of an ideal gas in increased from $27^{\circ} \mathrm{C}$ to $227^{\circ} \mathrm{C}$, its rms speed is changed from $400 \mathrm{~m} / \mathrm{s}$ to $v_{\mathrm{s}}$. Then, $v_{\mathrm{s}}$ is

1 $516 \mathrm{~m} / \mathrm{s}$
2 $450 \mathrm{~m} / \mathrm{s}$
3 $310 \mathrm{~m} / \mathrm{s}$
4 $746 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139274 R.M.S velocity of oxygen molecules at N.T.P is $0.5 \mathrm{~km} / \mathrm{s}$. The R.M.S velocity for the hydrogen molecule at N.T.P is

1 $4 \mathrm{~km} / \mathrm{s}$
2 $2 \mathrm{~km} / \mathrm{s}$
3 $3 \mathrm{~km} / \mathrm{s}$
4 $1 \mathrm{~km} / \mathrm{s}$
Kinetic Theory of Gases

139275 The rms velocity of a gas at $T^{\circ} \mathrm{C}$ is double the value at $27^{\circ} \mathrm{C}$. The temperature $\mathrm{T}$ of the gas in ${ }^{0} \mathrm{C}$ is (assume that the pressure remains constant)

1 927
2 820
3 1000
4 195
Kinetic Theory of Gases

139279 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139280 Pressure of an ideal gas is increased by keeping temperature constant. What is effect on kinetic energy of molecules?

1 Increase
2 Decrease
3 No change
4 Cannot be determined
Kinetic Theory of Gases

139281 When temperature of an ideal gas in increased from $27^{\circ} \mathrm{C}$ to $227^{\circ} \mathrm{C}$, its rms speed is changed from $400 \mathrm{~m} / \mathrm{s}$ to $v_{\mathrm{s}}$. Then, $v_{\mathrm{s}}$ is

1 $516 \mathrm{~m} / \mathrm{s}$
2 $450 \mathrm{~m} / \mathrm{s}$
3 $310 \mathrm{~m} / \mathrm{s}$
4 $746 \mathrm{~m} / \mathrm{s}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139274 R.M.S velocity of oxygen molecules at N.T.P is $0.5 \mathrm{~km} / \mathrm{s}$. The R.M.S velocity for the hydrogen molecule at N.T.P is

1 $4 \mathrm{~km} / \mathrm{s}$
2 $2 \mathrm{~km} / \mathrm{s}$
3 $3 \mathrm{~km} / \mathrm{s}$
4 $1 \mathrm{~km} / \mathrm{s}$
Kinetic Theory of Gases

139275 The rms velocity of a gas at $T^{\circ} \mathrm{C}$ is double the value at $27^{\circ} \mathrm{C}$. The temperature $\mathrm{T}$ of the gas in ${ }^{0} \mathrm{C}$ is (assume that the pressure remains constant)

1 927
2 820
3 1000
4 195
Kinetic Theory of Gases

139279 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139280 Pressure of an ideal gas is increased by keeping temperature constant. What is effect on kinetic energy of molecules?

1 Increase
2 Decrease
3 No change
4 Cannot be determined
Kinetic Theory of Gases

139281 When temperature of an ideal gas in increased from $27^{\circ} \mathrm{C}$ to $227^{\circ} \mathrm{C}$, its rms speed is changed from $400 \mathrm{~m} / \mathrm{s}$ to $v_{\mathrm{s}}$. Then, $v_{\mathrm{s}}$ is

1 $516 \mathrm{~m} / \mathrm{s}$
2 $450 \mathrm{~m} / \mathrm{s}$
3 $310 \mathrm{~m} / \mathrm{s}$
4 $746 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139274 R.M.S velocity of oxygen molecules at N.T.P is $0.5 \mathrm{~km} / \mathrm{s}$. The R.M.S velocity for the hydrogen molecule at N.T.P is

1 $4 \mathrm{~km} / \mathrm{s}$
2 $2 \mathrm{~km} / \mathrm{s}$
3 $3 \mathrm{~km} / \mathrm{s}$
4 $1 \mathrm{~km} / \mathrm{s}$
Kinetic Theory of Gases

139275 The rms velocity of a gas at $T^{\circ} \mathrm{C}$ is double the value at $27^{\circ} \mathrm{C}$. The temperature $\mathrm{T}$ of the gas in ${ }^{0} \mathrm{C}$ is (assume that the pressure remains constant)

1 927
2 820
3 1000
4 195
Kinetic Theory of Gases

139279 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139280 Pressure of an ideal gas is increased by keeping temperature constant. What is effect on kinetic energy of molecules?

1 Increase
2 Decrease
3 No change
4 Cannot be determined
Kinetic Theory of Gases

139281 When temperature of an ideal gas in increased from $27^{\circ} \mathrm{C}$ to $227^{\circ} \mathrm{C}$, its rms speed is changed from $400 \mathrm{~m} / \mathrm{s}$ to $v_{\mathrm{s}}$. Then, $v_{\mathrm{s}}$ is

1 $516 \mathrm{~m} / \mathrm{s}$
2 $450 \mathrm{~m} / \mathrm{s}$
3 $310 \mathrm{~m} / \mathrm{s}$
4 $746 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139274 R.M.S velocity of oxygen molecules at N.T.P is $0.5 \mathrm{~km} / \mathrm{s}$. The R.M.S velocity for the hydrogen molecule at N.T.P is

1 $4 \mathrm{~km} / \mathrm{s}$
2 $2 \mathrm{~km} / \mathrm{s}$
3 $3 \mathrm{~km} / \mathrm{s}$
4 $1 \mathrm{~km} / \mathrm{s}$
Kinetic Theory of Gases

139275 The rms velocity of a gas at $T^{\circ} \mathrm{C}$ is double the value at $27^{\circ} \mathrm{C}$. The temperature $\mathrm{T}$ of the gas in ${ }^{0} \mathrm{C}$ is (assume that the pressure remains constant)

1 927
2 820
3 1000
4 195
Kinetic Theory of Gases

139279 The root mean square velocity of gas molecules at $27^{\circ} \mathrm{C}$ is $1365 \mathrm{~m} / \mathrm{s}$. The gas is

1 $\mathrm{O}_{2}$
2 $\mathrm{He}$
3 $\mathrm{N}_{2}$
4 $\mathrm{CO}_{2}$
Kinetic Theory of Gases

139280 Pressure of an ideal gas is increased by keeping temperature constant. What is effect on kinetic energy of molecules?

1 Increase
2 Decrease
3 No change
4 Cannot be determined
Kinetic Theory of Gases

139281 When temperature of an ideal gas in increased from $27^{\circ} \mathrm{C}$ to $227^{\circ} \mathrm{C}$, its rms speed is changed from $400 \mathrm{~m} / \mathrm{s}$ to $v_{\mathrm{s}}$. Then, $v_{\mathrm{s}}$ is

1 $516 \mathrm{~m} / \mathrm{s}$
2 $450 \mathrm{~m} / \mathrm{s}$
3 $310 \mathrm{~m} / \mathrm{s}$
4 $746 \mathrm{~m} / \mathrm{s}$