Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139261 The rms speed of oxygen is $v$ at a particular temperature. If the temperature is doubled and oxygen molecules dissociate into oxygen atoms, the rms speed becomes

1 $\mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $2 \mathrm{v}$
4 $4 \mathrm{v}$
Kinetic Theory of Gases

139262 The r.m.s speed of the molecules of a gas at $100^{\circ} \mathrm{C}$ is $\mathrm{v}$. The temperature at which the r.m.s speed will be $\sqrt{3} \mathrm{v}$ is

1 $546^{\circ} \mathrm{C}$
2 $646^{\circ} \mathrm{C}$
3 $746^{\circ} \mathrm{C}$
4 $846^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139265 The temperature at which the r.m.s. velocity of constituent gas particles at $0^{\circ} \mathrm{C}$ decreases to half is

1 $0^{\circ} \mathrm{C}$
2 $-273^{\circ} \mathrm{C}$
3 $32^{\circ} \mathrm{C}$
4 $-204^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139266 The kinetic energy $k$ of a particle moving along a circle of radius $R$ depends on the distance covered. It is given as $K E=\mathrm{as}^{2}$ where, $\mathrm{a}$ is constant. The force acting on the particle is

1 $2 a \frac{s^{2}}{R}$
2 $2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
3 $2 \mathrm{as}$
4 $2 \mathrm{a} \frac{\mathrm{R}^{2}}{\mathrm{~s}}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139261 The rms speed of oxygen is $v$ at a particular temperature. If the temperature is doubled and oxygen molecules dissociate into oxygen atoms, the rms speed becomes

1 $\mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $2 \mathrm{v}$
4 $4 \mathrm{v}$
Kinetic Theory of Gases

139262 The r.m.s speed of the molecules of a gas at $100^{\circ} \mathrm{C}$ is $\mathrm{v}$. The temperature at which the r.m.s speed will be $\sqrt{3} \mathrm{v}$ is

1 $546^{\circ} \mathrm{C}$
2 $646^{\circ} \mathrm{C}$
3 $746^{\circ} \mathrm{C}$
4 $846^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139265 The temperature at which the r.m.s. velocity of constituent gas particles at $0^{\circ} \mathrm{C}$ decreases to half is

1 $0^{\circ} \mathrm{C}$
2 $-273^{\circ} \mathrm{C}$
3 $32^{\circ} \mathrm{C}$
4 $-204^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139266 The kinetic energy $k$ of a particle moving along a circle of radius $R$ depends on the distance covered. It is given as $K E=\mathrm{as}^{2}$ where, $\mathrm{a}$ is constant. The force acting on the particle is

1 $2 a \frac{s^{2}}{R}$
2 $2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
3 $2 \mathrm{as}$
4 $2 \mathrm{a} \frac{\mathrm{R}^{2}}{\mathrm{~s}}$
Kinetic Theory of Gases

139261 The rms speed of oxygen is $v$ at a particular temperature. If the temperature is doubled and oxygen molecules dissociate into oxygen atoms, the rms speed becomes

1 $\mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $2 \mathrm{v}$
4 $4 \mathrm{v}$
Kinetic Theory of Gases

139262 The r.m.s speed of the molecules of a gas at $100^{\circ} \mathrm{C}$ is $\mathrm{v}$. The temperature at which the r.m.s speed will be $\sqrt{3} \mathrm{v}$ is

1 $546^{\circ} \mathrm{C}$
2 $646^{\circ} \mathrm{C}$
3 $746^{\circ} \mathrm{C}$
4 $846^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139265 The temperature at which the r.m.s. velocity of constituent gas particles at $0^{\circ} \mathrm{C}$ decreases to half is

1 $0^{\circ} \mathrm{C}$
2 $-273^{\circ} \mathrm{C}$
3 $32^{\circ} \mathrm{C}$
4 $-204^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139266 The kinetic energy $k$ of a particle moving along a circle of radius $R$ depends on the distance covered. It is given as $K E=\mathrm{as}^{2}$ where, $\mathrm{a}$ is constant. The force acting on the particle is

1 $2 a \frac{s^{2}}{R}$
2 $2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
3 $2 \mathrm{as}$
4 $2 \mathrm{a} \frac{\mathrm{R}^{2}}{\mathrm{~s}}$
Kinetic Theory of Gases

139261 The rms speed of oxygen is $v$ at a particular temperature. If the temperature is doubled and oxygen molecules dissociate into oxygen atoms, the rms speed becomes

1 $\mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $2 \mathrm{v}$
4 $4 \mathrm{v}$
Kinetic Theory of Gases

139262 The r.m.s speed of the molecules of a gas at $100^{\circ} \mathrm{C}$ is $\mathrm{v}$. The temperature at which the r.m.s speed will be $\sqrt{3} \mathrm{v}$ is

1 $546^{\circ} \mathrm{C}$
2 $646^{\circ} \mathrm{C}$
3 $746^{\circ} \mathrm{C}$
4 $846^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139265 The temperature at which the r.m.s. velocity of constituent gas particles at $0^{\circ} \mathrm{C}$ decreases to half is

1 $0^{\circ} \mathrm{C}$
2 $-273^{\circ} \mathrm{C}$
3 $32^{\circ} \mathrm{C}$
4 $-204^{\circ} \mathrm{C}$
Kinetic Theory of Gases

139266 The kinetic energy $k$ of a particle moving along a circle of radius $R$ depends on the distance covered. It is given as $K E=\mathrm{as}^{2}$ where, $\mathrm{a}$ is constant. The force acting on the particle is

1 $2 a \frac{s^{2}}{R}$
2 $2 \mathrm{as}\left(1+\frac{\mathrm{s}^{2}}{\mathrm{R}^{2}}\right)^{1 / 2}$
3 $2 \mathrm{as}$
4 $2 \mathrm{a} \frac{\mathrm{R}^{2}}{\mathrm{~s}}$