Degree of Freedom, Various speeds of Gas Molecules
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139108 The temperature of an ideal gas is increased from 200 K to 800 K . If r.m.s. speed of gas at 200 K is $v_0$ Then, r.m.s. speed of the gas at 800 K will be:

1 $\mathrm{v}_0$
2 $4 \mathrm{v}_0$
3 $\frac{v_0}{4}$
4 $2 \mathrm{v}_0
Kinetic Theory of Gases

139110 The root mean square speed of smoke particles of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian motion in air at NTP is approximately. [Given, $k=1.38$ $\times 10^{-23} \mathrm{JK}^{-1}$ l

1 $60 \mathrm{~mm} \mathrm{~s}^{-1}$
2 $12 \mathrm{~mm} \mathrm{~s}^{-1}$
3 $15 \mathrm{~mm} \mathrm{~s}^{-1}$
4 $36 \mathrm{~mm} \mathrm{~s}^{-1}$
Kinetic Theory of Gases

139111 A vessel $A$ contains hydrogen and another vessel $B$ whose volume is twice of $A$ contains same mass of oxygen at the same temperature. What will be the ratio of r.m.s speed of the molecules?

1 $1: 1$
2 $2: 1$
3 $4: 1$
4 $8: 1$
Kinetic Theory of Gases

139112 Certain amount of an ideal gas is taken from its initial state 1 to final state 4 through the paths $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ as shown in figure $A B$, $C D, E F$ are all isotherms. If $v_{P}$ is the most probable speed of the molecules, then

1 $v_{\mathrm{P}}$ at $3-\mathrm{v}_{\mathrm{P}}$ at $4>\mathrm{v}_{\mathrm{P}}$ at $2>\mathrm{v}_{\mathrm{P}}$ at 1
2 $v_{P}$ at $3-v_{P}$ at $1>v_{P}$ at $2>v_{P}$ at 4
3 $v_{P}$ at $3>v_{P}$ at $2>v_{P}$ at $4>v_{P}$ at 1
4 $\mathrm{v}_{\mathrm{P}}$ at $2=\mathrm{v}_{\mathrm{P}}$ at $3>\mathrm{v}_{\mathrm{P}}$ at $1>\mathrm{v}_{\mathrm{P}}$ at 4
Kinetic Theory of Gases

139108 The temperature of an ideal gas is increased from 200 K to 800 K . If r.m.s. speed of gas at 200 K is $v_0$ Then, r.m.s. speed of the gas at 800 K will be:

1 $\mathrm{v}_0$
2 $4 \mathrm{v}_0$
3 $\frac{v_0}{4}$
4 $2 \mathrm{v}_0
Kinetic Theory of Gases

139110 The root mean square speed of smoke particles of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian motion in air at NTP is approximately. [Given, $k=1.38$ $\times 10^{-23} \mathrm{JK}^{-1}$ l

1 $60 \mathrm{~mm} \mathrm{~s}^{-1}$
2 $12 \mathrm{~mm} \mathrm{~s}^{-1}$
3 $15 \mathrm{~mm} \mathrm{~s}^{-1}$
4 $36 \mathrm{~mm} \mathrm{~s}^{-1}$
Kinetic Theory of Gases

139111 A vessel $A$ contains hydrogen and another vessel $B$ whose volume is twice of $A$ contains same mass of oxygen at the same temperature. What will be the ratio of r.m.s speed of the molecules?

1 $1: 1$
2 $2: 1$
3 $4: 1$
4 $8: 1$
Kinetic Theory of Gases

139112 Certain amount of an ideal gas is taken from its initial state 1 to final state 4 through the paths $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ as shown in figure $A B$, $C D, E F$ are all isotherms. If $v_{P}$ is the most probable speed of the molecules, then

1 $v_{\mathrm{P}}$ at $3-\mathrm{v}_{\mathrm{P}}$ at $4>\mathrm{v}_{\mathrm{P}}$ at $2>\mathrm{v}_{\mathrm{P}}$ at 1
2 $v_{P}$ at $3-v_{P}$ at $1>v_{P}$ at $2>v_{P}$ at 4
3 $v_{P}$ at $3>v_{P}$ at $2>v_{P}$ at $4>v_{P}$ at 1
4 $\mathrm{v}_{\mathrm{P}}$ at $2=\mathrm{v}_{\mathrm{P}}$ at $3>\mathrm{v}_{\mathrm{P}}$ at $1>\mathrm{v}_{\mathrm{P}}$ at 4
Kinetic Theory of Gases

139108 The temperature of an ideal gas is increased from 200 K to 800 K . If r.m.s. speed of gas at 200 K is $v_0$ Then, r.m.s. speed of the gas at 800 K will be:

1 $\mathrm{v}_0$
2 $4 \mathrm{v}_0$
3 $\frac{v_0}{4}$
4 $2 \mathrm{v}_0
Kinetic Theory of Gases

139110 The root mean square speed of smoke particles of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian motion in air at NTP is approximately. [Given, $k=1.38$ $\times 10^{-23} \mathrm{JK}^{-1}$ l

1 $60 \mathrm{~mm} \mathrm{~s}^{-1}$
2 $12 \mathrm{~mm} \mathrm{~s}^{-1}$
3 $15 \mathrm{~mm} \mathrm{~s}^{-1}$
4 $36 \mathrm{~mm} \mathrm{~s}^{-1}$
Kinetic Theory of Gases

139111 A vessel $A$ contains hydrogen and another vessel $B$ whose volume is twice of $A$ contains same mass of oxygen at the same temperature. What will be the ratio of r.m.s speed of the molecules?

1 $1: 1$
2 $2: 1$
3 $4: 1$
4 $8: 1$
Kinetic Theory of Gases

139112 Certain amount of an ideal gas is taken from its initial state 1 to final state 4 through the paths $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ as shown in figure $A B$, $C D, E F$ are all isotherms. If $v_{P}$ is the most probable speed of the molecules, then

1 $v_{\mathrm{P}}$ at $3-\mathrm{v}_{\mathrm{P}}$ at $4>\mathrm{v}_{\mathrm{P}}$ at $2>\mathrm{v}_{\mathrm{P}}$ at 1
2 $v_{P}$ at $3-v_{P}$ at $1>v_{P}$ at $2>v_{P}$ at 4
3 $v_{P}$ at $3>v_{P}$ at $2>v_{P}$ at $4>v_{P}$ at 1
4 $\mathrm{v}_{\mathrm{P}}$ at $2=\mathrm{v}_{\mathrm{P}}$ at $3>\mathrm{v}_{\mathrm{P}}$ at $1>\mathrm{v}_{\mathrm{P}}$ at 4
Kinetic Theory of Gases

139108 The temperature of an ideal gas is increased from 200 K to 800 K . If r.m.s. speed of gas at 200 K is $v_0$ Then, r.m.s. speed of the gas at 800 K will be:

1 $\mathrm{v}_0$
2 $4 \mathrm{v}_0$
3 $\frac{v_0}{4}$
4 $2 \mathrm{v}_0
Kinetic Theory of Gases

139110 The root mean square speed of smoke particles of mass $5 \times 10^{-17} \mathrm{~kg}$ in their Brownian motion in air at NTP is approximately. [Given, $k=1.38$ $\times 10^{-23} \mathrm{JK}^{-1}$ l

1 $60 \mathrm{~mm} \mathrm{~s}^{-1}$
2 $12 \mathrm{~mm} \mathrm{~s}^{-1}$
3 $15 \mathrm{~mm} \mathrm{~s}^{-1}$
4 $36 \mathrm{~mm} \mathrm{~s}^{-1}$
Kinetic Theory of Gases

139111 A vessel $A$ contains hydrogen and another vessel $B$ whose volume is twice of $A$ contains same mass of oxygen at the same temperature. What will be the ratio of r.m.s speed of the molecules?

1 $1: 1$
2 $2: 1$
3 $4: 1$
4 $8: 1$
Kinetic Theory of Gases

139112 Certain amount of an ideal gas is taken from its initial state 1 to final state 4 through the paths $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ as shown in figure $A B$, $C D, E F$ are all isotherms. If $v_{P}$ is the most probable speed of the molecules, then

1 $v_{\mathrm{P}}$ at $3-\mathrm{v}_{\mathrm{P}}$ at $4>\mathrm{v}_{\mathrm{P}}$ at $2>\mathrm{v}_{\mathrm{P}}$ at 1
2 $v_{P}$ at $3-v_{P}$ at $1>v_{P}$ at $2>v_{P}$ at 4
3 $v_{P}$ at $3>v_{P}$ at $2>v_{P}$ at $4>v_{P}$ at 1
4 $\mathrm{v}_{\mathrm{P}}$ at $2=\mathrm{v}_{\mathrm{P}}$ at $3>\mathrm{v}_{\mathrm{P}}$ at $1>\mathrm{v}_{\mathrm{P}}$ at 4