Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139210 The temperature of an ideal gas is increased from $100 \mathrm{~K}$ to $400 \mathrm{~K}$. If the rms speed of the gas molecule is $v$ at $100 \mathrm{~K}$, then at $400 \mathrm{~K}$ it becomes

1 $2 \mathrm{v}$
2 $4 \mathrm{v}$
3 $0.5 \mathrm{v}$
4 $0.25 \mathrm{v}$
5 $\mathrm{v}$
Kinetic Theory of Gases

139211 For a molecule of an ideal gas, the number density is $2 \sqrt{2} \times 10^{8} \mathrm{~cm}^{-3}$ and the mean free path is $\frac{10^{-2}}{\pi} \mathrm{cm}$. The diameter of the gas molecule is

1 $5 \times 10^{-4} \mathrm{~cm}$}$
2 $0.5 \times 10^{-4} \mathrm{~cm}$
3 $2.5 \times 10^{-4} \mathrm{~cm
4 $4 \times 10^{-4} \mathrm{~cm}$
Kinetic Theory of Gases

139214 The root mean square (rms) velocity of an ideal gas at temperature $T$ is $v$. If the temperature is increased to $4 \mathrm{~T}$, the $\mathrm{rms}$ velocity of the gas is

1 $\sqrt{3} \mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $2 \mathrm{v}$
4 $3 \mathrm{v}$
Kinetic Theory of Gases

139215 The mass of $\mathrm{H}_{2}$ molecule is $3.32 \times 10^{-24} \mathrm{~g}$. If $10^{23}$ hydrogen molecules per second strike $2 \mathrm{~cm}^{2}$ of wall at an angle of $45^{\circ}$ with the normal, while moving with a speed of $10^{5} \mathrm{~cm} / \mathrm{s}$, the pressure exterted on the wall is nearly.

1 $1350 \mathrm{~N} / \mathrm{m}^{2}$
2 $2350 \mathrm{~N} / \mathrm{m}^{2}$
3 $3320 \mathrm{~N} / \mathrm{m}^{2}$
4 $1660 \mathrm{~N} / \mathrm{m}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139210 The temperature of an ideal gas is increased from $100 \mathrm{~K}$ to $400 \mathrm{~K}$. If the rms speed of the gas molecule is $v$ at $100 \mathrm{~K}$, then at $400 \mathrm{~K}$ it becomes

1 $2 \mathrm{v}$
2 $4 \mathrm{v}$
3 $0.5 \mathrm{v}$
4 $0.25 \mathrm{v}$
5 $\mathrm{v}$
Kinetic Theory of Gases

139211 For a molecule of an ideal gas, the number density is $2 \sqrt{2} \times 10^{8} \mathrm{~cm}^{-3}$ and the mean free path is $\frac{10^{-2}}{\pi} \mathrm{cm}$. The diameter of the gas molecule is

1 $5 \times 10^{-4} \mathrm{~cm}$}$
2 $0.5 \times 10^{-4} \mathrm{~cm}$
3 $2.5 \times 10^{-4} \mathrm{~cm
4 $4 \times 10^{-4} \mathrm{~cm}$
Kinetic Theory of Gases

139214 The root mean square (rms) velocity of an ideal gas at temperature $T$ is $v$. If the temperature is increased to $4 \mathrm{~T}$, the $\mathrm{rms}$ velocity of the gas is

1 $\sqrt{3} \mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $2 \mathrm{v}$
4 $3 \mathrm{v}$
Kinetic Theory of Gases

139215 The mass of $\mathrm{H}_{2}$ molecule is $3.32 \times 10^{-24} \mathrm{~g}$. If $10^{23}$ hydrogen molecules per second strike $2 \mathrm{~cm}^{2}$ of wall at an angle of $45^{\circ}$ with the normal, while moving with a speed of $10^{5} \mathrm{~cm} / \mathrm{s}$, the pressure exterted on the wall is nearly.

1 $1350 \mathrm{~N} / \mathrm{m}^{2}$
2 $2350 \mathrm{~N} / \mathrm{m}^{2}$
3 $3320 \mathrm{~N} / \mathrm{m}^{2}$
4 $1660 \mathrm{~N} / \mathrm{m}^{2}$
Kinetic Theory of Gases

139210 The temperature of an ideal gas is increased from $100 \mathrm{~K}$ to $400 \mathrm{~K}$. If the rms speed of the gas molecule is $v$ at $100 \mathrm{~K}$, then at $400 \mathrm{~K}$ it becomes

1 $2 \mathrm{v}$
2 $4 \mathrm{v}$
3 $0.5 \mathrm{v}$
4 $0.25 \mathrm{v}$
5 $\mathrm{v}$
Kinetic Theory of Gases

139211 For a molecule of an ideal gas, the number density is $2 \sqrt{2} \times 10^{8} \mathrm{~cm}^{-3}$ and the mean free path is $\frac{10^{-2}}{\pi} \mathrm{cm}$. The diameter of the gas molecule is

1 $5 \times 10^{-4} \mathrm{~cm}$}$
2 $0.5 \times 10^{-4} \mathrm{~cm}$
3 $2.5 \times 10^{-4} \mathrm{~cm
4 $4 \times 10^{-4} \mathrm{~cm}$
Kinetic Theory of Gases

139214 The root mean square (rms) velocity of an ideal gas at temperature $T$ is $v$. If the temperature is increased to $4 \mathrm{~T}$, the $\mathrm{rms}$ velocity of the gas is

1 $\sqrt{3} \mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $2 \mathrm{v}$
4 $3 \mathrm{v}$
Kinetic Theory of Gases

139215 The mass of $\mathrm{H}_{2}$ molecule is $3.32 \times 10^{-24} \mathrm{~g}$. If $10^{23}$ hydrogen molecules per second strike $2 \mathrm{~cm}^{2}$ of wall at an angle of $45^{\circ}$ with the normal, while moving with a speed of $10^{5} \mathrm{~cm} / \mathrm{s}$, the pressure exterted on the wall is nearly.

1 $1350 \mathrm{~N} / \mathrm{m}^{2}$
2 $2350 \mathrm{~N} / \mathrm{m}^{2}$
3 $3320 \mathrm{~N} / \mathrm{m}^{2}$
4 $1660 \mathrm{~N} / \mathrm{m}^{2}$
Kinetic Theory of Gases

139210 The temperature of an ideal gas is increased from $100 \mathrm{~K}$ to $400 \mathrm{~K}$. If the rms speed of the gas molecule is $v$ at $100 \mathrm{~K}$, then at $400 \mathrm{~K}$ it becomes

1 $2 \mathrm{v}$
2 $4 \mathrm{v}$
3 $0.5 \mathrm{v}$
4 $0.25 \mathrm{v}$
5 $\mathrm{v}$
Kinetic Theory of Gases

139211 For a molecule of an ideal gas, the number density is $2 \sqrt{2} \times 10^{8} \mathrm{~cm}^{-3}$ and the mean free path is $\frac{10^{-2}}{\pi} \mathrm{cm}$. The diameter of the gas molecule is

1 $5 \times 10^{-4} \mathrm{~cm}$}$
2 $0.5 \times 10^{-4} \mathrm{~cm}$
3 $2.5 \times 10^{-4} \mathrm{~cm
4 $4 \times 10^{-4} \mathrm{~cm}$
Kinetic Theory of Gases

139214 The root mean square (rms) velocity of an ideal gas at temperature $T$ is $v$. If the temperature is increased to $4 \mathrm{~T}$, the $\mathrm{rms}$ velocity of the gas is

1 $\sqrt{3} \mathrm{v}$
2 $\sqrt{2} \mathrm{v}$
3 $2 \mathrm{v}$
4 $3 \mathrm{v}$
Kinetic Theory of Gases

139215 The mass of $\mathrm{H}_{2}$ molecule is $3.32 \times 10^{-24} \mathrm{~g}$. If $10^{23}$ hydrogen molecules per second strike $2 \mathrm{~cm}^{2}$ of wall at an angle of $45^{\circ}$ with the normal, while moving with a speed of $10^{5} \mathrm{~cm} / \mathrm{s}$, the pressure exterted on the wall is nearly.

1 $1350 \mathrm{~N} / \mathrm{m}^{2}$
2 $2350 \mathrm{~N} / \mathrm{m}^{2}$
3 $3320 \mathrm{~N} / \mathrm{m}^{2}$
4 $1660 \mathrm{~N} / \mathrm{m}^{2}$