Degree of Freedom, Various speeds of Gas Molecules
Kinetic Theory of Gases

139150 If the root mean square (rms) speed of nitrogen molecules at room temperature is $100 \mathrm{~m} / \mathrm{s}$, then the rms speed of Helium molecule at the same temperature is

1 $100 \sqrt{7} \mathrm{~m} / \mathrm{s}$
2 $350 \mathrm{~m} / \mathrm{s}$
3 $50 \sqrt{14} \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139155 Consider an ideal gas in which each molecule has mass ' $m$ ' and rms speed $v$. If the mass of each molecule is doubled and the rms speed is reduced to $v / 3$, then the ratio of initial pressure of the gas is

1 $\frac{4}{9}$
2 $\frac{9}{2}$
3 $\frac{3}{4}$
4 $\frac{3}{2}$
Kinetic Theory of Gases

139156 Match Column I with Column II and choose the correct match from the given choices.
| |Column I | | Column II |
| :--- | :--- | :---: | :--- |
| A. | Root mean square speed of gas molecules | 1. | $\frac{1}{3} \mathrm{nmv}^{-2}$ |
| B. | Pressure exerted by ideal gas | 2. | $\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$ |
| C. | Average kinetic energy of a molecule | 3. | $\frac{5}{2} \mathrm{RT}$ |
| D. | Total internal energy of 1 mole of a diatomic gas| 4. | $\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$ |

1 3 (A) 1 (B) 4 (C) 2 (D)
2 2 (A) 3 (B) 4 (C) 1 (D)
3 2 (A) 1 (B) 4 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Kinetic Theory of Gases

139157 Temperature determines the direction of net change of

1 gross Kinetic energy
2 gross Potential energy
3 intermolecular Potential energy
4 intermolecular Kinetic energy
Kinetic Theory of Gases

139158 A sphere of radius $R$ containing a monatomic gas of molar mass $M$ at temperature $T$ is allowed to fall freely through a height of $h$ under gravity with an acceleration due to gravity $g$, before hitting a surface, where it stopped completely. The increase in temperature of the gas inside is (universal gas constant $R$ )

1 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}}$
2 $\frac{\mathrm{Mgh}}{\mathrm{R}} \mathrm{R}$
3 $\frac{\mathrm{Mgh}}{\mathrm{RT}} \mathrm{R}$
4 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}} \mathrm{R}$
Kinetic Theory of Gases

139150 If the root mean square (rms) speed of nitrogen molecules at room temperature is $100 \mathrm{~m} / \mathrm{s}$, then the rms speed of Helium molecule at the same temperature is

1 $100 \sqrt{7} \mathrm{~m} / \mathrm{s}$
2 $350 \mathrm{~m} / \mathrm{s}$
3 $50 \sqrt{14} \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139155 Consider an ideal gas in which each molecule has mass ' $m$ ' and rms speed $v$. If the mass of each molecule is doubled and the rms speed is reduced to $v / 3$, then the ratio of initial pressure of the gas is

1 $\frac{4}{9}$
2 $\frac{9}{2}$
3 $\frac{3}{4}$
4 $\frac{3}{2}$
Kinetic Theory of Gases

139156 Match Column I with Column II and choose the correct match from the given choices.
| |Column I | | Column II |
| :--- | :--- | :---: | :--- |
| A. | Root mean square speed of gas molecules | 1. | $\frac{1}{3} \mathrm{nmv}^{-2}$ |
| B. | Pressure exerted by ideal gas | 2. | $\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$ |
| C. | Average kinetic energy of a molecule | 3. | $\frac{5}{2} \mathrm{RT}$ |
| D. | Total internal energy of 1 mole of a diatomic gas| 4. | $\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$ |

1 3 (A) 1 (B) 4 (C) 2 (D)
2 2 (A) 3 (B) 4 (C) 1 (D)
3 2 (A) 1 (B) 4 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Kinetic Theory of Gases

139157 Temperature determines the direction of net change of

1 gross Kinetic energy
2 gross Potential energy
3 intermolecular Potential energy
4 intermolecular Kinetic energy
Kinetic Theory of Gases

139158 A sphere of radius $R$ containing a monatomic gas of molar mass $M$ at temperature $T$ is allowed to fall freely through a height of $h$ under gravity with an acceleration due to gravity $g$, before hitting a surface, where it stopped completely. The increase in temperature of the gas inside is (universal gas constant $R$ )

1 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}}$
2 $\frac{\mathrm{Mgh}}{\mathrm{R}} \mathrm{R}$
3 $\frac{\mathrm{Mgh}}{\mathrm{RT}} \mathrm{R}$
4 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}} \mathrm{R}$
Kinetic Theory of Gases

139150 If the root mean square (rms) speed of nitrogen molecules at room temperature is $100 \mathrm{~m} / \mathrm{s}$, then the rms speed of Helium molecule at the same temperature is

1 $100 \sqrt{7} \mathrm{~m} / \mathrm{s}$
2 $350 \mathrm{~m} / \mathrm{s}$
3 $50 \sqrt{14} \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139155 Consider an ideal gas in which each molecule has mass ' $m$ ' and rms speed $v$. If the mass of each molecule is doubled and the rms speed is reduced to $v / 3$, then the ratio of initial pressure of the gas is

1 $\frac{4}{9}$
2 $\frac{9}{2}$
3 $\frac{3}{4}$
4 $\frac{3}{2}$
Kinetic Theory of Gases

139156 Match Column I with Column II and choose the correct match from the given choices.
| |Column I | | Column II |
| :--- | :--- | :---: | :--- |
| A. | Root mean square speed of gas molecules | 1. | $\frac{1}{3} \mathrm{nmv}^{-2}$ |
| B. | Pressure exerted by ideal gas | 2. | $\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$ |
| C. | Average kinetic energy of a molecule | 3. | $\frac{5}{2} \mathrm{RT}$ |
| D. | Total internal energy of 1 mole of a diatomic gas| 4. | $\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$ |

1 3 (A) 1 (B) 4 (C) 2 (D)
2 2 (A) 3 (B) 4 (C) 1 (D)
3 2 (A) 1 (B) 4 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Kinetic Theory of Gases

139157 Temperature determines the direction of net change of

1 gross Kinetic energy
2 gross Potential energy
3 intermolecular Potential energy
4 intermolecular Kinetic energy
Kinetic Theory of Gases

139158 A sphere of radius $R$ containing a monatomic gas of molar mass $M$ at temperature $T$ is allowed to fall freely through a height of $h$ under gravity with an acceleration due to gravity $g$, before hitting a surface, where it stopped completely. The increase in temperature of the gas inside is (universal gas constant $R$ )

1 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}}$
2 $\frac{\mathrm{Mgh}}{\mathrm{R}} \mathrm{R}$
3 $\frac{\mathrm{Mgh}}{\mathrm{RT}} \mathrm{R}$
4 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}} \mathrm{R}$
Kinetic Theory of Gases

139150 If the root mean square (rms) speed of nitrogen molecules at room temperature is $100 \mathrm{~m} / \mathrm{s}$, then the rms speed of Helium molecule at the same temperature is

1 $100 \sqrt{7} \mathrm{~m} / \mathrm{s}$
2 $350 \mathrm{~m} / \mathrm{s}$
3 $50 \sqrt{14} \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139155 Consider an ideal gas in which each molecule has mass ' $m$ ' and rms speed $v$. If the mass of each molecule is doubled and the rms speed is reduced to $v / 3$, then the ratio of initial pressure of the gas is

1 $\frac{4}{9}$
2 $\frac{9}{2}$
3 $\frac{3}{4}$
4 $\frac{3}{2}$
Kinetic Theory of Gases

139156 Match Column I with Column II and choose the correct match from the given choices.
| |Column I | | Column II |
| :--- | :--- | :---: | :--- |
| A. | Root mean square speed of gas molecules | 1. | $\frac{1}{3} \mathrm{nmv}^{-2}$ |
| B. | Pressure exerted by ideal gas | 2. | $\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$ |
| C. | Average kinetic energy of a molecule | 3. | $\frac{5}{2} \mathrm{RT}$ |
| D. | Total internal energy of 1 mole of a diatomic gas| 4. | $\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$ |

1 3 (A) 1 (B) 4 (C) 2 (D)
2 2 (A) 3 (B) 4 (C) 1 (D)
3 2 (A) 1 (B) 4 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Kinetic Theory of Gases

139157 Temperature determines the direction of net change of

1 gross Kinetic energy
2 gross Potential energy
3 intermolecular Potential energy
4 intermolecular Kinetic energy
Kinetic Theory of Gases

139158 A sphere of radius $R$ containing a monatomic gas of molar mass $M$ at temperature $T$ is allowed to fall freely through a height of $h$ under gravity with an acceleration due to gravity $g$, before hitting a surface, where it stopped completely. The increase in temperature of the gas inside is (universal gas constant $R$ )

1 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}}$
2 $\frac{\mathrm{Mgh}}{\mathrm{R}} \mathrm{R}$
3 $\frac{\mathrm{Mgh}}{\mathrm{RT}} \mathrm{R}$
4 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}} \mathrm{R}$
Kinetic Theory of Gases

139150 If the root mean square (rms) speed of nitrogen molecules at room temperature is $100 \mathrm{~m} / \mathrm{s}$, then the rms speed of Helium molecule at the same temperature is

1 $100 \sqrt{7} \mathrm{~m} / \mathrm{s}$
2 $350 \mathrm{~m} / \mathrm{s}$
3 $50 \sqrt{14} \mathrm{~m} / \mathrm{s}$
4 $100 \mathrm{~m} / \mathrm{s}$
Kinetic Theory of Gases

139155 Consider an ideal gas in which each molecule has mass ' $m$ ' and rms speed $v$. If the mass of each molecule is doubled and the rms speed is reduced to $v / 3$, then the ratio of initial pressure of the gas is

1 $\frac{4}{9}$
2 $\frac{9}{2}$
3 $\frac{3}{4}$
4 $\frac{3}{2}$
Kinetic Theory of Gases

139156 Match Column I with Column II and choose the correct match from the given choices.
| |Column I | | Column II |
| :--- | :--- | :---: | :--- |
| A. | Root mean square speed of gas molecules | 1. | $\frac{1}{3} \mathrm{nmv}^{-2}$ |
| B. | Pressure exerted by ideal gas | 2. | $\sqrt{\frac{3 \mathrm{RT}}{\mathrm{M}}}$ |
| C. | Average kinetic energy of a molecule | 3. | $\frac{5}{2} \mathrm{RT}$ |
| D. | Total internal energy of 1 mole of a diatomic gas| 4. | $\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$ |

1 3 (A) 1 (B) 4 (C) 2 (D)
2 2 (A) 3 (B) 4 (C) 1 (D)
3 2 (A) 1 (B) 4 (C) 3 (D)
4 3 (A) 2 (B) 1 (C) 4 (D)
Kinetic Theory of Gases

139157 Temperature determines the direction of net change of

1 gross Kinetic energy
2 gross Potential energy
3 intermolecular Potential energy
4 intermolecular Kinetic energy
Kinetic Theory of Gases

139158 A sphere of radius $R$ containing a monatomic gas of molar mass $M$ at temperature $T$ is allowed to fall freely through a height of $h$ under gravity with an acceleration due to gravity $g$, before hitting a surface, where it stopped completely. The increase in temperature of the gas inside is (universal gas constant $R$ )

1 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}}$
2 $\frac{\mathrm{Mgh}}{\mathrm{R}} \mathrm{R}$
3 $\frac{\mathrm{Mgh}}{\mathrm{RT}} \mathrm{R}$
4 $\frac{2 \mathrm{Mgh}}{3 \mathrm{R}} \mathrm{R}$