Ideal Gas Equation and Vander Waal equation
Kinetic Theory of Gases

139006 In a given process on an ideal gas, $d W=0$ and
$d Q \lt 0$. Then for the gas

1 the temperature will decrease
2 the volume will increase
3 the pressure will remain constant
4 the temperature will increase
Kinetic Theory of Gases

139007 A gaseous mixture has 2 moles of oxygen and 4 moles of Argon at a temperature T. Neglecting all vibrational modes of the molecules, the total internal energy of the system is
(R-Universal gas constant)

1 $4 \mathrm{RT}$
2 $15 \mathrm{RT}$
3 9 RT
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139008 Which of the graphs shown in the following figures correctly represents the variation of $\beta=-\left(\frac{d V}{d P}\right) \frac{1}{V}$ with $P$ for an ideal gas at constant temperature?

1
2
3
4
Kinetic Theory of Gases

139009 If a kilo mole of methane gas weights $16 \mathrm{~kg}$ the density of methane at $20^{\circ} \mathrm{C}$ and $5 \mathrm{~atm}$ pressure is.
(Use R $=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})$

1 $3.33 \mathrm{~kg} / \mathrm{m}^{3}$
2 $48 \mathrm{~kg} / \mathrm{m}^{3}$
3 $3.3 \times 10^{-5} \mathrm{~kg} / \mathrm{m}^{3}$
4 $1 \mathrm{~kg} / \mathrm{m}^{3}$
Kinetic Theory of Gases

139006 In a given process on an ideal gas, $d W=0$ and
$d Q \lt 0$. Then for the gas

1 the temperature will decrease
2 the volume will increase
3 the pressure will remain constant
4 the temperature will increase
Kinetic Theory of Gases

139007 A gaseous mixture has 2 moles of oxygen and 4 moles of Argon at a temperature T. Neglecting all vibrational modes of the molecules, the total internal energy of the system is
(R-Universal gas constant)

1 $4 \mathrm{RT}$
2 $15 \mathrm{RT}$
3 9 RT
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139008 Which of the graphs shown in the following figures correctly represents the variation of $\beta=-\left(\frac{d V}{d P}\right) \frac{1}{V}$ with $P$ for an ideal gas at constant temperature?

1
2
3
4
Kinetic Theory of Gases

139009 If a kilo mole of methane gas weights $16 \mathrm{~kg}$ the density of methane at $20^{\circ} \mathrm{C}$ and $5 \mathrm{~atm}$ pressure is.
(Use R $=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})$

1 $3.33 \mathrm{~kg} / \mathrm{m}^{3}$
2 $48 \mathrm{~kg} / \mathrm{m}^{3}$
3 $3.3 \times 10^{-5} \mathrm{~kg} / \mathrm{m}^{3}$
4 $1 \mathrm{~kg} / \mathrm{m}^{3}$
Kinetic Theory of Gases

139006 In a given process on an ideal gas, $d W=0$ and
$d Q \lt 0$. Then for the gas

1 the temperature will decrease
2 the volume will increase
3 the pressure will remain constant
4 the temperature will increase
Kinetic Theory of Gases

139007 A gaseous mixture has 2 moles of oxygen and 4 moles of Argon at a temperature T. Neglecting all vibrational modes of the molecules, the total internal energy of the system is
(R-Universal gas constant)

1 $4 \mathrm{RT}$
2 $15 \mathrm{RT}$
3 9 RT
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139008 Which of the graphs shown in the following figures correctly represents the variation of $\beta=-\left(\frac{d V}{d P}\right) \frac{1}{V}$ with $P$ for an ideal gas at constant temperature?

1
2
3
4
Kinetic Theory of Gases

139009 If a kilo mole of methane gas weights $16 \mathrm{~kg}$ the density of methane at $20^{\circ} \mathrm{C}$ and $5 \mathrm{~atm}$ pressure is.
(Use R $=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})$

1 $3.33 \mathrm{~kg} / \mathrm{m}^{3}$
2 $48 \mathrm{~kg} / \mathrm{m}^{3}$
3 $3.3 \times 10^{-5} \mathrm{~kg} / \mathrm{m}^{3}$
4 $1 \mathrm{~kg} / \mathrm{m}^{3}$
Kinetic Theory of Gases

139006 In a given process on an ideal gas, $d W=0$ and
$d Q \lt 0$. Then for the gas

1 the temperature will decrease
2 the volume will increase
3 the pressure will remain constant
4 the temperature will increase
Kinetic Theory of Gases

139007 A gaseous mixture has 2 moles of oxygen and 4 moles of Argon at a temperature T. Neglecting all vibrational modes of the molecules, the total internal energy of the system is
(R-Universal gas constant)

1 $4 \mathrm{RT}$
2 $15 \mathrm{RT}$
3 9 RT
4 $11 \mathrm{RT}$
Kinetic Theory of Gases

139008 Which of the graphs shown in the following figures correctly represents the variation of $\beta=-\left(\frac{d V}{d P}\right) \frac{1}{V}$ with $P$ for an ideal gas at constant temperature?

1
2
3
4
Kinetic Theory of Gases

139009 If a kilo mole of methane gas weights $16 \mathrm{~kg}$ the density of methane at $20^{\circ} \mathrm{C}$ and $5 \mathrm{~atm}$ pressure is.
(Use R $=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K})$

1 $3.33 \mathrm{~kg} / \mathrm{m}^{3}$
2 $48 \mathrm{~kg} / \mathrm{m}^{3}$
3 $3.3 \times 10^{-5} \mathrm{~kg} / \mathrm{m}^{3}$
4 $1 \mathrm{~kg} / \mathrm{m}^{3}$