Ideal Gas Equation and Vander Waal equation
Kinetic Theory of Gases

139014 A vessel of volume $V$ contains a mixture of ideal gases at temperature $T$. The gas mixture contains $n_{1}, n_{2}$ and $n_{3}$ moles of three gases. Assuming ideal gas system, the pressure of the mixture is

1 $\frac{\left(n_{1}+n_{2}+n_{3}\right) R T}{V}$
2 $\frac{\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right) \mathrm{RT}}{\mathrm{V}}$
3 $\frac{\mathrm{RT}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}\right) \mathrm{V}}$
4 $\frac{\mathrm{RT}}{\mathrm{V}\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right)}$
Kinetic Theory of Gases

139015 One mole of the ideal gas goes through the process $p=p_{0}\left[1-\alpha\left(\frac{V}{V_{0}}\right)^{3}\right]$, where $p$ and $V$ are pressure and volume, $p_{0}, V_{0}$ and $\alpha$ are constants. If the maximum attainable temperature of the gas is

1 2
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 4
Kinetic Theory of Gases

139016 Two different isotherms representing the relationship between pressure $p$ and volume $V$ at a given temperature of the same ideal gas are shown for masses $m_1$ and $m_2$ of the gas respectively in the figure given, then
original image

1 $\mathrm{m}_{1}>\mathrm{m}_{2}$
2 $\mathrm{m}_{1}=\mathrm{m}_{2}$
3 $\mathrm{m}_{1} \lt \mathrm{m}_{2}$
4 $\mathrm{m}_{1} \geq \mathrm{m}_{2}$
Kinetic Theory of Gases

139017 Tyre of a bicycle has volume $2 \times 10^{-3} \mathrm{~m}^{3}$. Initially, the tube is filled $75 \%$ of its volume by air at atmospheric pressure $10^{5} \mathrm{Nm}^{-2}$. When a rider is on the bicycle, the area of contact of tyre with road is $24 \times 10^{-4} \mathrm{~m}^{2}$. The mass of rider with bicycle is $120 \mathrm{~kg}$. If a pump delivers a volume $500 \mathrm{~cm}^{3}$ of air in each stroke, then the number of strokes required to inflate the tyre is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

1 10
2 11
3 21
4 20
Kinetic Theory of Gases

139018 In a certain region of space there are only 5 molecules per $\mathrm{cm}^{3}$ on an average. The temperature is $3 \mathrm{~K}$. The pressure of this dilute gas is : $\left(\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$

1 $20.7 \times 10^{-17} \mathrm{~N} / \mathrm{m}^{2}$
2 $15.3 \times 10^{-15} \mathrm{~N} / \mathrm{m}^{2}$
3 $2.3 \times 10^{-10} \mathrm{~N} / \mathrm{m}^{2}$
4 $5.3 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
5 $3.5 \times 10^{-8} \mathrm{~N} / \mathrm{m}^{2}$
Kinetic Theory of Gases

139014 A vessel of volume $V$ contains a mixture of ideal gases at temperature $T$. The gas mixture contains $n_{1}, n_{2}$ and $n_{3}$ moles of three gases. Assuming ideal gas system, the pressure of the mixture is

1 $\frac{\left(n_{1}+n_{2}+n_{3}\right) R T}{V}$
2 $\frac{\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right) \mathrm{RT}}{\mathrm{V}}$
3 $\frac{\mathrm{RT}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}\right) \mathrm{V}}$
4 $\frac{\mathrm{RT}}{\mathrm{V}\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right)}$
Kinetic Theory of Gases

139015 One mole of the ideal gas goes through the process $p=p_{0}\left[1-\alpha\left(\frac{V}{V_{0}}\right)^{3}\right]$, where $p$ and $V$ are pressure and volume, $p_{0}, V_{0}$ and $\alpha$ are constants. If the maximum attainable temperature of the gas is

1 2
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 4
Kinetic Theory of Gases

139016 Two different isotherms representing the relationship between pressure $p$ and volume $V$ at a given temperature of the same ideal gas are shown for masses $m_1$ and $m_2$ of the gas respectively in the figure given, then
original image

1 $\mathrm{m}_{1}>\mathrm{m}_{2}$
2 $\mathrm{m}_{1}=\mathrm{m}_{2}$
3 $\mathrm{m}_{1} \lt \mathrm{m}_{2}$
4 $\mathrm{m}_{1} \geq \mathrm{m}_{2}$
Kinetic Theory of Gases

139017 Tyre of a bicycle has volume $2 \times 10^{-3} \mathrm{~m}^{3}$. Initially, the tube is filled $75 \%$ of its volume by air at atmospheric pressure $10^{5} \mathrm{Nm}^{-2}$. When a rider is on the bicycle, the area of contact of tyre with road is $24 \times 10^{-4} \mathrm{~m}^{2}$. The mass of rider with bicycle is $120 \mathrm{~kg}$. If a pump delivers a volume $500 \mathrm{~cm}^{3}$ of air in each stroke, then the number of strokes required to inflate the tyre is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

1 10
2 11
3 21
4 20
Kinetic Theory of Gases

139018 In a certain region of space there are only 5 molecules per $\mathrm{cm}^{3}$ on an average. The temperature is $3 \mathrm{~K}$. The pressure of this dilute gas is : $\left(\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$

1 $20.7 \times 10^{-17} \mathrm{~N} / \mathrm{m}^{2}$
2 $15.3 \times 10^{-15} \mathrm{~N} / \mathrm{m}^{2}$
3 $2.3 \times 10^{-10} \mathrm{~N} / \mathrm{m}^{2}$
4 $5.3 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
5 $3.5 \times 10^{-8} \mathrm{~N} / \mathrm{m}^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

139014 A vessel of volume $V$ contains a mixture of ideal gases at temperature $T$. The gas mixture contains $n_{1}, n_{2}$ and $n_{3}$ moles of three gases. Assuming ideal gas system, the pressure of the mixture is

1 $\frac{\left(n_{1}+n_{2}+n_{3}\right) R T}{V}$
2 $\frac{\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right) \mathrm{RT}}{\mathrm{V}}$
3 $\frac{\mathrm{RT}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}\right) \mathrm{V}}$
4 $\frac{\mathrm{RT}}{\mathrm{V}\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right)}$
Kinetic Theory of Gases

139015 One mole of the ideal gas goes through the process $p=p_{0}\left[1-\alpha\left(\frac{V}{V_{0}}\right)^{3}\right]$, where $p$ and $V$ are pressure and volume, $p_{0}, V_{0}$ and $\alpha$ are constants. If the maximum attainable temperature of the gas is

1 2
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 4
Kinetic Theory of Gases

139016 Two different isotherms representing the relationship between pressure $p$ and volume $V$ at a given temperature of the same ideal gas are shown for masses $m_1$ and $m_2$ of the gas respectively in the figure given, then
original image

1 $\mathrm{m}_{1}>\mathrm{m}_{2}$
2 $\mathrm{m}_{1}=\mathrm{m}_{2}$
3 $\mathrm{m}_{1} \lt \mathrm{m}_{2}$
4 $\mathrm{m}_{1} \geq \mathrm{m}_{2}$
Kinetic Theory of Gases

139017 Tyre of a bicycle has volume $2 \times 10^{-3} \mathrm{~m}^{3}$. Initially, the tube is filled $75 \%$ of its volume by air at atmospheric pressure $10^{5} \mathrm{Nm}^{-2}$. When a rider is on the bicycle, the area of contact of tyre with road is $24 \times 10^{-4} \mathrm{~m}^{2}$. The mass of rider with bicycle is $120 \mathrm{~kg}$. If a pump delivers a volume $500 \mathrm{~cm}^{3}$ of air in each stroke, then the number of strokes required to inflate the tyre is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

1 10
2 11
3 21
4 20
Kinetic Theory of Gases

139018 In a certain region of space there are only 5 molecules per $\mathrm{cm}^{3}$ on an average. The temperature is $3 \mathrm{~K}$. The pressure of this dilute gas is : $\left(\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$

1 $20.7 \times 10^{-17} \mathrm{~N} / \mathrm{m}^{2}$
2 $15.3 \times 10^{-15} \mathrm{~N} / \mathrm{m}^{2}$
3 $2.3 \times 10^{-10} \mathrm{~N} / \mathrm{m}^{2}$
4 $5.3 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
5 $3.5 \times 10^{-8} \mathrm{~N} / \mathrm{m}^{2}$
Kinetic Theory of Gases

139014 A vessel of volume $V$ contains a mixture of ideal gases at temperature $T$. The gas mixture contains $n_{1}, n_{2}$ and $n_{3}$ moles of three gases. Assuming ideal gas system, the pressure of the mixture is

1 $\frac{\left(n_{1}+n_{2}+n_{3}\right) R T}{V}$
2 $\frac{\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right) \mathrm{RT}}{\mathrm{V}}$
3 $\frac{\mathrm{RT}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}\right) \mathrm{V}}$
4 $\frac{\mathrm{RT}}{\mathrm{V}\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right)}$
Kinetic Theory of Gases

139015 One mole of the ideal gas goes through the process $p=p_{0}\left[1-\alpha\left(\frac{V}{V_{0}}\right)^{3}\right]$, where $p$ and $V$ are pressure and volume, $p_{0}, V_{0}$ and $\alpha$ are constants. If the maximum attainable temperature of the gas is

1 2
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 4
Kinetic Theory of Gases

139016 Two different isotherms representing the relationship between pressure $p$ and volume $V$ at a given temperature of the same ideal gas are shown for masses $m_1$ and $m_2$ of the gas respectively in the figure given, then
original image

1 $\mathrm{m}_{1}>\mathrm{m}_{2}$
2 $\mathrm{m}_{1}=\mathrm{m}_{2}$
3 $\mathrm{m}_{1} \lt \mathrm{m}_{2}$
4 $\mathrm{m}_{1} \geq \mathrm{m}_{2}$
Kinetic Theory of Gases

139017 Tyre of a bicycle has volume $2 \times 10^{-3} \mathrm{~m}^{3}$. Initially, the tube is filled $75 \%$ of its volume by air at atmospheric pressure $10^{5} \mathrm{Nm}^{-2}$. When a rider is on the bicycle, the area of contact of tyre with road is $24 \times 10^{-4} \mathrm{~m}^{2}$. The mass of rider with bicycle is $120 \mathrm{~kg}$. If a pump delivers a volume $500 \mathrm{~cm}^{3}$ of air in each stroke, then the number of strokes required to inflate the tyre is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

1 10
2 11
3 21
4 20
Kinetic Theory of Gases

139018 In a certain region of space there are only 5 molecules per $\mathrm{cm}^{3}$ on an average. The temperature is $3 \mathrm{~K}$. The pressure of this dilute gas is : $\left(\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$

1 $20.7 \times 10^{-17} \mathrm{~N} / \mathrm{m}^{2}$
2 $15.3 \times 10^{-15} \mathrm{~N} / \mathrm{m}^{2}$
3 $2.3 \times 10^{-10} \mathrm{~N} / \mathrm{m}^{2}$
4 $5.3 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
5 $3.5 \times 10^{-8} \mathrm{~N} / \mathrm{m}^{2}$
Kinetic Theory of Gases

139014 A vessel of volume $V$ contains a mixture of ideal gases at temperature $T$. The gas mixture contains $n_{1}, n_{2}$ and $n_{3}$ moles of three gases. Assuming ideal gas system, the pressure of the mixture is

1 $\frac{\left(n_{1}+n_{2}+n_{3}\right) R T}{V}$
2 $\frac{\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right) \mathrm{RT}}{\mathrm{V}}$
3 $\frac{\mathrm{RT}}{\left(\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}\right) \mathrm{V}}$
4 $\frac{\mathrm{RT}}{\mathrm{V}\left(\mathrm{n}_{1} \mathrm{n}_{2} \mathrm{n}_{3}\right)}$
Kinetic Theory of Gases

139015 One mole of the ideal gas goes through the process $p=p_{0}\left[1-\alpha\left(\frac{V}{V_{0}}\right)^{3}\right]$, where $p$ and $V$ are pressure and volume, $p_{0}, V_{0}$ and $\alpha$ are constants. If the maximum attainable temperature of the gas is

1 2
2 $\frac{1}{2}$
3 $\frac{1}{4}$
4 4
Kinetic Theory of Gases

139016 Two different isotherms representing the relationship between pressure $p$ and volume $V$ at a given temperature of the same ideal gas are shown for masses $m_1$ and $m_2$ of the gas respectively in the figure given, then
original image

1 $\mathrm{m}_{1}>\mathrm{m}_{2}$
2 $\mathrm{m}_{1}=\mathrm{m}_{2}$
3 $\mathrm{m}_{1} \lt \mathrm{m}_{2}$
4 $\mathrm{m}_{1} \geq \mathrm{m}_{2}$
Kinetic Theory of Gases

139017 Tyre of a bicycle has volume $2 \times 10^{-3} \mathrm{~m}^{3}$. Initially, the tube is filled $75 \%$ of its volume by air at atmospheric pressure $10^{5} \mathrm{Nm}^{-2}$. When a rider is on the bicycle, the area of contact of tyre with road is $24 \times 10^{-4} \mathrm{~m}^{2}$. The mass of rider with bicycle is $120 \mathrm{~kg}$. If a pump delivers a volume $500 \mathrm{~cm}^{3}$ of air in each stroke, then the number of strokes required to inflate the tyre is $\left(\mathrm{g}=10 \mathrm{~ms}^{-2}\right)$

1 10
2 11
3 21
4 20
Kinetic Theory of Gases

139018 In a certain region of space there are only 5 molecules per $\mathrm{cm}^{3}$ on an average. The temperature is $3 \mathrm{~K}$. The pressure of this dilute gas is : $\left(\mathrm{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)$

1 $20.7 \times 10^{-17} \mathrm{~N} / \mathrm{m}^{2}$
2 $15.3 \times 10^{-15} \mathrm{~N} / \mathrm{m}^{2}$
3 $2.3 \times 10^{-10} \mathrm{~N} / \mathrm{m}^{2}$
4 $5.3 \times 10^{-5} \mathrm{~N} / \mathrm{m}^{2}$
5 $3.5 \times 10^{-8} \mathrm{~N} / \mathrm{m}^{2}$