Ideal Gas Equation and Vander Waal equation
Kinetic Theory of Gases

138968 A balloon contains $1500 \mathrm{~m}^{3}$ of helium at $27^{\circ} \mathrm{C}$ and 4 atmospheric pressure. The volume of helium at $-3^{\circ} \mathrm{C}$ temperature and 2 atmospheric pressure will,

1 $1500 \mathrm{~m}^{3}$
2 $1700 \mathrm{~m}^{3}$
3 $1900 \mathrm{~m}^{3}$
4 $2700 \mathrm{~m}^{3}$
Kinetic Theory of Gases

138969 If pressure of $\mathrm{CO}_{2}$ (real gas) in a container is given by $P=\frac{R T}{2 V-b}-\frac{a}{4 b^{2}}$, then mass of the gas in container is-

1 $11 \mathrm{~g}$
2 $22 \mathrm{~g}$
3 $33 \mathrm{~g}$
4 $44 \mathrm{~g}$
Kinetic Theory of Gases

138970 Two balloons are filled one with pure, He gas and other with air respectively. If the pressure and temperature of these balloons are same, then the number of molecules per unit volume is

1 more in He gas filled balloon
2 same in both balloons
3 more in air filled balloon
4 in the ratio $1: 4$
Kinetic Theory of Gases

138972 The equation of state for $2 \mathrm{~g}$ of oxygen at a pressure ' $P$ ' and temperature ' $T$ ', when occupying a volume ' $V$ ' will be

1 $\mathrm{PV}=\frac{1}{16} \mathrm{RT}$
2 $\mathrm{PV}=\mathrm{RT}$
3 $\mathrm{PV}=2 \mathrm{RT}$
4 $\mathrm{PV}=16 \mathrm{RT}$
Kinetic Theory of Gases

138973 The volume of a gas at $30^{\circ} \mathrm{C}$ temperature and $760 \mathrm{~mm}$ of $\mathrm{Hg}$ pressure is $100 \mathrm{cc}$. Then its volume at the same temperature and $400 \mathrm{~mm}$ of $\mathrm{Hg}$ is

1 $190 \mathrm{cc}$
2 $210 \mathrm{cc}$
3 $150 \mathrm{cc}$
4 $120 \mathrm{cc}$
Kinetic Theory of Gases

138968 A balloon contains $1500 \mathrm{~m}^{3}$ of helium at $27^{\circ} \mathrm{C}$ and 4 atmospheric pressure. The volume of helium at $-3^{\circ} \mathrm{C}$ temperature and 2 atmospheric pressure will,

1 $1500 \mathrm{~m}^{3}$
2 $1700 \mathrm{~m}^{3}$
3 $1900 \mathrm{~m}^{3}$
4 $2700 \mathrm{~m}^{3}$
Kinetic Theory of Gases

138969 If pressure of $\mathrm{CO}_{2}$ (real gas) in a container is given by $P=\frac{R T}{2 V-b}-\frac{a}{4 b^{2}}$, then mass of the gas in container is-

1 $11 \mathrm{~g}$
2 $22 \mathrm{~g}$
3 $33 \mathrm{~g}$
4 $44 \mathrm{~g}$
Kinetic Theory of Gases

138970 Two balloons are filled one with pure, He gas and other with air respectively. If the pressure and temperature of these balloons are same, then the number of molecules per unit volume is

1 more in He gas filled balloon
2 same in both balloons
3 more in air filled balloon
4 in the ratio $1: 4$
Kinetic Theory of Gases

138972 The equation of state for $2 \mathrm{~g}$ of oxygen at a pressure ' $P$ ' and temperature ' $T$ ', when occupying a volume ' $V$ ' will be

1 $\mathrm{PV}=\frac{1}{16} \mathrm{RT}$
2 $\mathrm{PV}=\mathrm{RT}$
3 $\mathrm{PV}=2 \mathrm{RT}$
4 $\mathrm{PV}=16 \mathrm{RT}$
Kinetic Theory of Gases

138973 The volume of a gas at $30^{\circ} \mathrm{C}$ temperature and $760 \mathrm{~mm}$ of $\mathrm{Hg}$ pressure is $100 \mathrm{cc}$. Then its volume at the same temperature and $400 \mathrm{~mm}$ of $\mathrm{Hg}$ is

1 $190 \mathrm{cc}$
2 $210 \mathrm{cc}$
3 $150 \mathrm{cc}$
4 $120 \mathrm{cc}$
Kinetic Theory of Gases

138968 A balloon contains $1500 \mathrm{~m}^{3}$ of helium at $27^{\circ} \mathrm{C}$ and 4 atmospheric pressure. The volume of helium at $-3^{\circ} \mathrm{C}$ temperature and 2 atmospheric pressure will,

1 $1500 \mathrm{~m}^{3}$
2 $1700 \mathrm{~m}^{3}$
3 $1900 \mathrm{~m}^{3}$
4 $2700 \mathrm{~m}^{3}$
Kinetic Theory of Gases

138969 If pressure of $\mathrm{CO}_{2}$ (real gas) in a container is given by $P=\frac{R T}{2 V-b}-\frac{a}{4 b^{2}}$, then mass of the gas in container is-

1 $11 \mathrm{~g}$
2 $22 \mathrm{~g}$
3 $33 \mathrm{~g}$
4 $44 \mathrm{~g}$
Kinetic Theory of Gases

138970 Two balloons are filled one with pure, He gas and other with air respectively. If the pressure and temperature of these balloons are same, then the number of molecules per unit volume is

1 more in He gas filled balloon
2 same in both balloons
3 more in air filled balloon
4 in the ratio $1: 4$
Kinetic Theory of Gases

138972 The equation of state for $2 \mathrm{~g}$ of oxygen at a pressure ' $P$ ' and temperature ' $T$ ', when occupying a volume ' $V$ ' will be

1 $\mathrm{PV}=\frac{1}{16} \mathrm{RT}$
2 $\mathrm{PV}=\mathrm{RT}$
3 $\mathrm{PV}=2 \mathrm{RT}$
4 $\mathrm{PV}=16 \mathrm{RT}$
Kinetic Theory of Gases

138973 The volume of a gas at $30^{\circ} \mathrm{C}$ temperature and $760 \mathrm{~mm}$ of $\mathrm{Hg}$ pressure is $100 \mathrm{cc}$. Then its volume at the same temperature and $400 \mathrm{~mm}$ of $\mathrm{Hg}$ is

1 $190 \mathrm{cc}$
2 $210 \mathrm{cc}$
3 $150 \mathrm{cc}$
4 $120 \mathrm{cc}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Kinetic Theory of Gases

138968 A balloon contains $1500 \mathrm{~m}^{3}$ of helium at $27^{\circ} \mathrm{C}$ and 4 atmospheric pressure. The volume of helium at $-3^{\circ} \mathrm{C}$ temperature and 2 atmospheric pressure will,

1 $1500 \mathrm{~m}^{3}$
2 $1700 \mathrm{~m}^{3}$
3 $1900 \mathrm{~m}^{3}$
4 $2700 \mathrm{~m}^{3}$
Kinetic Theory of Gases

138969 If pressure of $\mathrm{CO}_{2}$ (real gas) in a container is given by $P=\frac{R T}{2 V-b}-\frac{a}{4 b^{2}}$, then mass of the gas in container is-

1 $11 \mathrm{~g}$
2 $22 \mathrm{~g}$
3 $33 \mathrm{~g}$
4 $44 \mathrm{~g}$
Kinetic Theory of Gases

138970 Two balloons are filled one with pure, He gas and other with air respectively. If the pressure and temperature of these balloons are same, then the number of molecules per unit volume is

1 more in He gas filled balloon
2 same in both balloons
3 more in air filled balloon
4 in the ratio $1: 4$
Kinetic Theory of Gases

138972 The equation of state for $2 \mathrm{~g}$ of oxygen at a pressure ' $P$ ' and temperature ' $T$ ', when occupying a volume ' $V$ ' will be

1 $\mathrm{PV}=\frac{1}{16} \mathrm{RT}$
2 $\mathrm{PV}=\mathrm{RT}$
3 $\mathrm{PV}=2 \mathrm{RT}$
4 $\mathrm{PV}=16 \mathrm{RT}$
Kinetic Theory of Gases

138973 The volume of a gas at $30^{\circ} \mathrm{C}$ temperature and $760 \mathrm{~mm}$ of $\mathrm{Hg}$ pressure is $100 \mathrm{cc}$. Then its volume at the same temperature and $400 \mathrm{~mm}$ of $\mathrm{Hg}$ is

1 $190 \mathrm{cc}$
2 $210 \mathrm{cc}$
3 $150 \mathrm{cc}$
4 $120 \mathrm{cc}$
Kinetic Theory of Gases

138968 A balloon contains $1500 \mathrm{~m}^{3}$ of helium at $27^{\circ} \mathrm{C}$ and 4 atmospheric pressure. The volume of helium at $-3^{\circ} \mathrm{C}$ temperature and 2 atmospheric pressure will,

1 $1500 \mathrm{~m}^{3}$
2 $1700 \mathrm{~m}^{3}$
3 $1900 \mathrm{~m}^{3}$
4 $2700 \mathrm{~m}^{3}$
Kinetic Theory of Gases

138969 If pressure of $\mathrm{CO}_{2}$ (real gas) in a container is given by $P=\frac{R T}{2 V-b}-\frac{a}{4 b^{2}}$, then mass of the gas in container is-

1 $11 \mathrm{~g}$
2 $22 \mathrm{~g}$
3 $33 \mathrm{~g}$
4 $44 \mathrm{~g}$
Kinetic Theory of Gases

138970 Two balloons are filled one with pure, He gas and other with air respectively. If the pressure and temperature of these balloons are same, then the number of molecules per unit volume is

1 more in He gas filled balloon
2 same in both balloons
3 more in air filled balloon
4 in the ratio $1: 4$
Kinetic Theory of Gases

138972 The equation of state for $2 \mathrm{~g}$ of oxygen at a pressure ' $P$ ' and temperature ' $T$ ', when occupying a volume ' $V$ ' will be

1 $\mathrm{PV}=\frac{1}{16} \mathrm{RT}$
2 $\mathrm{PV}=\mathrm{RT}$
3 $\mathrm{PV}=2 \mathrm{RT}$
4 $\mathrm{PV}=16 \mathrm{RT}$
Kinetic Theory of Gases

138973 The volume of a gas at $30^{\circ} \mathrm{C}$ temperature and $760 \mathrm{~mm}$ of $\mathrm{Hg}$ pressure is $100 \mathrm{cc}$. Then its volume at the same temperature and $400 \mathrm{~mm}$ of $\mathrm{Hg}$ is

1 $190 \mathrm{cc}$
2 $210 \mathrm{cc}$
3 $150 \mathrm{cc}$
4 $120 \mathrm{cc}$