Line Spectral Of Hydrogen Atom
ATOMS

145545 A hydrogen atom goes to excited state absorbing a photon with wavelength $\frac{100}{99 R} \stackrel{\circ}{A}$ where $R$ is the Rydberg constant. If this absorption corresponds to a transition line in the Lyman series, calculate the energy of the excited state.

1 $-0.136 \mathrm{eV}$
2 $-0.213 \mathrm{eV}$
3 $-0.112 \mathrm{eV}$
4 $-0.167 \mathrm{eV}$
ATOMS

145547 In the hydrogen atom the ratio of wavelengths of the Balmer transition $(n=4$ to $n=2)$ to Lyman transition $(n=3 \rightarrow n=1)$ is

1 $\frac{128}{27}$
2 $\frac{18}{64}$
3 $\frac{64}{18}$
4 $\frac{27}{128}$
ATOMS

145548 A light beam travelling in the $\mathrm{X}$-direction is described by the electric field $E_{y}=(600 \mathrm{~V} / \mathrm{m})$ $\sin (\omega t+\phi)$. An electron is constrained to move along the Y-direction with a speed of $1.0 \times$ $10^{7} \mathrm{~m} / \mathrm{s}$. Find the maximum magnetic force on the electron.

1 $1.8 \times 10^{-17} \mathrm{~N}$
2 $3.2 \times 10^{-18} \mathrm{~N}$
3 $3.2 \times 10^{-17} \mathrm{~N}$
4 $1.8 \times 10^{-18} \mathrm{~N}$
ATOMS

145549 The electron in hydrogen atom is initially in the third state. When it finally moves to ground state, the maximum number of spectral lines emitted are

1 5
2 2
3 6
4 3
ATOMS

145545 A hydrogen atom goes to excited state absorbing a photon with wavelength $\frac{100}{99 R} \stackrel{\circ}{A}$ where $R$ is the Rydberg constant. If this absorption corresponds to a transition line in the Lyman series, calculate the energy of the excited state.

1 $-0.136 \mathrm{eV}$
2 $-0.213 \mathrm{eV}$
3 $-0.112 \mathrm{eV}$
4 $-0.167 \mathrm{eV}$
ATOMS

145547 In the hydrogen atom the ratio of wavelengths of the Balmer transition $(n=4$ to $n=2)$ to Lyman transition $(n=3 \rightarrow n=1)$ is

1 $\frac{128}{27}$
2 $\frac{18}{64}$
3 $\frac{64}{18}$
4 $\frac{27}{128}$
ATOMS

145548 A light beam travelling in the $\mathrm{X}$-direction is described by the electric field $E_{y}=(600 \mathrm{~V} / \mathrm{m})$ $\sin (\omega t+\phi)$. An electron is constrained to move along the Y-direction with a speed of $1.0 \times$ $10^{7} \mathrm{~m} / \mathrm{s}$. Find the maximum magnetic force on the electron.

1 $1.8 \times 10^{-17} \mathrm{~N}$
2 $3.2 \times 10^{-18} \mathrm{~N}$
3 $3.2 \times 10^{-17} \mathrm{~N}$
4 $1.8 \times 10^{-18} \mathrm{~N}$
ATOMS

145549 The electron in hydrogen atom is initially in the third state. When it finally moves to ground state, the maximum number of spectral lines emitted are

1 5
2 2
3 6
4 3
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ATOMS

145545 A hydrogen atom goes to excited state absorbing a photon with wavelength $\frac{100}{99 R} \stackrel{\circ}{A}$ where $R$ is the Rydberg constant. If this absorption corresponds to a transition line in the Lyman series, calculate the energy of the excited state.

1 $-0.136 \mathrm{eV}$
2 $-0.213 \mathrm{eV}$
3 $-0.112 \mathrm{eV}$
4 $-0.167 \mathrm{eV}$
ATOMS

145547 In the hydrogen atom the ratio of wavelengths of the Balmer transition $(n=4$ to $n=2)$ to Lyman transition $(n=3 \rightarrow n=1)$ is

1 $\frac{128}{27}$
2 $\frac{18}{64}$
3 $\frac{64}{18}$
4 $\frac{27}{128}$
ATOMS

145548 A light beam travelling in the $\mathrm{X}$-direction is described by the electric field $E_{y}=(600 \mathrm{~V} / \mathrm{m})$ $\sin (\omega t+\phi)$. An electron is constrained to move along the Y-direction with a speed of $1.0 \times$ $10^{7} \mathrm{~m} / \mathrm{s}$. Find the maximum magnetic force on the electron.

1 $1.8 \times 10^{-17} \mathrm{~N}$
2 $3.2 \times 10^{-18} \mathrm{~N}$
3 $3.2 \times 10^{-17} \mathrm{~N}$
4 $1.8 \times 10^{-18} \mathrm{~N}$
ATOMS

145549 The electron in hydrogen atom is initially in the third state. When it finally moves to ground state, the maximum number of spectral lines emitted are

1 5
2 2
3 6
4 3
ATOMS

145545 A hydrogen atom goes to excited state absorbing a photon with wavelength $\frac{100}{99 R} \stackrel{\circ}{A}$ where $R$ is the Rydberg constant. If this absorption corresponds to a transition line in the Lyman series, calculate the energy of the excited state.

1 $-0.136 \mathrm{eV}$
2 $-0.213 \mathrm{eV}$
3 $-0.112 \mathrm{eV}$
4 $-0.167 \mathrm{eV}$
ATOMS

145547 In the hydrogen atom the ratio of wavelengths of the Balmer transition $(n=4$ to $n=2)$ to Lyman transition $(n=3 \rightarrow n=1)$ is

1 $\frac{128}{27}$
2 $\frac{18}{64}$
3 $\frac{64}{18}$
4 $\frac{27}{128}$
ATOMS

145548 A light beam travelling in the $\mathrm{X}$-direction is described by the electric field $E_{y}=(600 \mathrm{~V} / \mathrm{m})$ $\sin (\omega t+\phi)$. An electron is constrained to move along the Y-direction with a speed of $1.0 \times$ $10^{7} \mathrm{~m} / \mathrm{s}$. Find the maximum magnetic force on the electron.

1 $1.8 \times 10^{-17} \mathrm{~N}$
2 $3.2 \times 10^{-18} \mathrm{~N}$
3 $3.2 \times 10^{-17} \mathrm{~N}$
4 $1.8 \times 10^{-18} \mathrm{~N}$
ATOMS

145549 The electron in hydrogen atom is initially in the third state. When it finally moves to ground state, the maximum number of spectral lines emitted are

1 5
2 2
3 6
4 3