Line Spectral Of Hydrogen Atom
ATOMS

145513 In hydrogen spectrum, the shortest wavelength in the Balmer series is $\lambda$. The shortest wavelength in the Bracket series is:

1 $16 \lambda$
2 $2 \lambda$
3 $4 \lambda$
4 $9 \lambda$
ATOMS

145516 The energy levels of an atom is shown in figure.

Which one of these transitions will result in the emission of a photon of wavelength $124.1 \mathrm{~nm}$ ? Given $\left(h=6.62 \times 10^{-34} \mathrm{Js}\right)$

1 D
2 $\mathrm{B}$
3 $\mathrm{A}$
4 $\mathrm{C}$
ATOMS

145517 A photon is emitted in transition from $n=4$ to $\mathrm{n}=1$ level in hydrogen atom. The corresponding wavelength for this transition is (given, $\mathrm{h}=4 \times 10^{-15} \mathrm{eVs}$ ):

1 $941 \mathrm{~nm}$
2 $97.4 \mathrm{~nm}$
3 $99.3 \mathrm{~nm}$
4 $94.1 \mathrm{~nm}$
ATOMS

145518 The radius of the innermost electron orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What are the radii of then $n=3$ orbit ?

1 $4.12 \times 10^{-10} \mathrm{~m}$
2 $4.77 \times 10^{-10} \mathrm{~m}$
3 $2.12 \times 10^{-10} \mathrm{~m}$
4 $2.24 \times 10^{-10} \mathrm{~m}$
ATOMS

145519 The shortest wavelength in the Paschen series of the Hydrogen spectrum is Rydberg constant of hydrogen $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

1 $91.2 \mathrm{~nm}$
2 $364.6 \mathrm{~nm}$
3 $820.4 \mathrm{~nm}$
4 $2278.9 \mathrm{~nm}$
ATOMS

145513 In hydrogen spectrum, the shortest wavelength in the Balmer series is $\lambda$. The shortest wavelength in the Bracket series is:

1 $16 \lambda$
2 $2 \lambda$
3 $4 \lambda$
4 $9 \lambda$
ATOMS

145516 The energy levels of an atom is shown in figure.

Which one of these transitions will result in the emission of a photon of wavelength $124.1 \mathrm{~nm}$ ? Given $\left(h=6.62 \times 10^{-34} \mathrm{Js}\right)$

1 D
2 $\mathrm{B}$
3 $\mathrm{A}$
4 $\mathrm{C}$
ATOMS

145517 A photon is emitted in transition from $n=4$ to $\mathrm{n}=1$ level in hydrogen atom. The corresponding wavelength for this transition is (given, $\mathrm{h}=4 \times 10^{-15} \mathrm{eVs}$ ):

1 $941 \mathrm{~nm}$
2 $97.4 \mathrm{~nm}$
3 $99.3 \mathrm{~nm}$
4 $94.1 \mathrm{~nm}$
ATOMS

145518 The radius of the innermost electron orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What are the radii of then $n=3$ orbit ?

1 $4.12 \times 10^{-10} \mathrm{~m}$
2 $4.77 \times 10^{-10} \mathrm{~m}$
3 $2.12 \times 10^{-10} \mathrm{~m}$
4 $2.24 \times 10^{-10} \mathrm{~m}$
ATOMS

145519 The shortest wavelength in the Paschen series of the Hydrogen spectrum is Rydberg constant of hydrogen $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

1 $91.2 \mathrm{~nm}$
2 $364.6 \mathrm{~nm}$
3 $820.4 \mathrm{~nm}$
4 $2278.9 \mathrm{~nm}$
ATOMS

145513 In hydrogen spectrum, the shortest wavelength in the Balmer series is $\lambda$. The shortest wavelength in the Bracket series is:

1 $16 \lambda$
2 $2 \lambda$
3 $4 \lambda$
4 $9 \lambda$
ATOMS

145516 The energy levels of an atom is shown in figure.

Which one of these transitions will result in the emission of a photon of wavelength $124.1 \mathrm{~nm}$ ? Given $\left(h=6.62 \times 10^{-34} \mathrm{Js}\right)$

1 D
2 $\mathrm{B}$
3 $\mathrm{A}$
4 $\mathrm{C}$
ATOMS

145517 A photon is emitted in transition from $n=4$ to $\mathrm{n}=1$ level in hydrogen atom. The corresponding wavelength for this transition is (given, $\mathrm{h}=4 \times 10^{-15} \mathrm{eVs}$ ):

1 $941 \mathrm{~nm}$
2 $97.4 \mathrm{~nm}$
3 $99.3 \mathrm{~nm}$
4 $94.1 \mathrm{~nm}$
ATOMS

145518 The radius of the innermost electron orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What are the radii of then $n=3$ orbit ?

1 $4.12 \times 10^{-10} \mathrm{~m}$
2 $4.77 \times 10^{-10} \mathrm{~m}$
3 $2.12 \times 10^{-10} \mathrm{~m}$
4 $2.24 \times 10^{-10} \mathrm{~m}$
ATOMS

145519 The shortest wavelength in the Paschen series of the Hydrogen spectrum is Rydberg constant of hydrogen $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

1 $91.2 \mathrm{~nm}$
2 $364.6 \mathrm{~nm}$
3 $820.4 \mathrm{~nm}$
4 $2278.9 \mathrm{~nm}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ATOMS

145513 In hydrogen spectrum, the shortest wavelength in the Balmer series is $\lambda$. The shortest wavelength in the Bracket series is:

1 $16 \lambda$
2 $2 \lambda$
3 $4 \lambda$
4 $9 \lambda$
ATOMS

145516 The energy levels of an atom is shown in figure.

Which one of these transitions will result in the emission of a photon of wavelength $124.1 \mathrm{~nm}$ ? Given $\left(h=6.62 \times 10^{-34} \mathrm{Js}\right)$

1 D
2 $\mathrm{B}$
3 $\mathrm{A}$
4 $\mathrm{C}$
ATOMS

145517 A photon is emitted in transition from $n=4$ to $\mathrm{n}=1$ level in hydrogen atom. The corresponding wavelength for this transition is (given, $\mathrm{h}=4 \times 10^{-15} \mathrm{eVs}$ ):

1 $941 \mathrm{~nm}$
2 $97.4 \mathrm{~nm}$
3 $99.3 \mathrm{~nm}$
4 $94.1 \mathrm{~nm}$
ATOMS

145518 The radius of the innermost electron orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What are the radii of then $n=3$ orbit ?

1 $4.12 \times 10^{-10} \mathrm{~m}$
2 $4.77 \times 10^{-10} \mathrm{~m}$
3 $2.12 \times 10^{-10} \mathrm{~m}$
4 $2.24 \times 10^{-10} \mathrm{~m}$
ATOMS

145519 The shortest wavelength in the Paschen series of the Hydrogen spectrum is Rydberg constant of hydrogen $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

1 $91.2 \mathrm{~nm}$
2 $364.6 \mathrm{~nm}$
3 $820.4 \mathrm{~nm}$
4 $2278.9 \mathrm{~nm}$
ATOMS

145513 In hydrogen spectrum, the shortest wavelength in the Balmer series is $\lambda$. The shortest wavelength in the Bracket series is:

1 $16 \lambda$
2 $2 \lambda$
3 $4 \lambda$
4 $9 \lambda$
ATOMS

145516 The energy levels of an atom is shown in figure.

Which one of these transitions will result in the emission of a photon of wavelength $124.1 \mathrm{~nm}$ ? Given $\left(h=6.62 \times 10^{-34} \mathrm{Js}\right)$

1 D
2 $\mathrm{B}$
3 $\mathrm{A}$
4 $\mathrm{C}$
ATOMS

145517 A photon is emitted in transition from $n=4$ to $\mathrm{n}=1$ level in hydrogen atom. The corresponding wavelength for this transition is (given, $\mathrm{h}=4 \times 10^{-15} \mathrm{eVs}$ ):

1 $941 \mathrm{~nm}$
2 $97.4 \mathrm{~nm}$
3 $99.3 \mathrm{~nm}$
4 $94.1 \mathrm{~nm}$
ATOMS

145518 The radius of the innermost electron orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What are the radii of then $n=3$ orbit ?

1 $4.12 \times 10^{-10} \mathrm{~m}$
2 $4.77 \times 10^{-10} \mathrm{~m}$
3 $2.12 \times 10^{-10} \mathrm{~m}$
4 $2.24 \times 10^{-10} \mathrm{~m}$
ATOMS

145519 The shortest wavelength in the Paschen series of the Hydrogen spectrum is Rydberg constant of hydrogen $=1.097 \times 10^{7} \mathrm{~m}^{-1}$

1 $91.2 \mathrm{~nm}$
2 $364.6 \mathrm{~nm}$
3 $820.4 \mathrm{~nm}$
4 $2278.9 \mathrm{~nm}$