Bohr Model, Rutherford Model
ATOMS

145307 The radius of inner most orbit of hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What is the radius of third allowed orbit of hydrogen atom?

1 $4.77 \stackrel{\circ}{\AA}$
2 $0.53 \AA$
3 $1.06 \stackrel{\circ}{\AA}$
4 $1.59 \AA$
ATOMS

145308 The angular momentum for the electron in Bohr's orbit is $L$. If the electron is assumed to revolve in second orbit of hydrogen atom, then the change in angular momentum will be:

1 $\frac{\mathrm{L}}{2}$
2 zero
3 $\mathrm{L}$
4 $2 \mathrm{~L}$
ATOMS

145309 A small particle of mass $m$ moves in such a way that its potential energy $U=\frac{1}{2} m \omega^{2} r^{2}$ where $\omega$ is constant and $r$ is the distance of the particle from origin Assuming Bohr's quantization of momentum and circular orbit, the radius of $n^{\text {th }}$ orbit will be proportional to

1 $\sqrt{\mathrm{n}}$
2 $n$
3 $\mathrm{n}^{2}$
4 $\frac{1}{n}$
ATOMS

145310 The radius of electron's second stationary orbit in Bohr's atom is $R$. The radius of 3rd orbit will be:

1 $\frac{\mathrm{R}}{3}$
2 $9 \mathrm{R}$
3 $2.25 \mathrm{R}$
4 $3 \mathrm{R}$
ATOMS

145311 Speed of an electron Bohr's $7^{\text {th }}$ orbit for Hydrogen atom is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The corresponding speed of the electron in $3^{\text {rd }}$ orbit, in $\mathbf{m} / \mathbf{s}$ is :

1 $3.6 \times 10^{6}$
2 $7.5 \times 10^{6}$
3 $1.8 \times 10^{6}$
4 $8.4 \times 10^{6}$
ATOMS

145307 The radius of inner most orbit of hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What is the radius of third allowed orbit of hydrogen atom?

1 $4.77 \stackrel{\circ}{\AA}$
2 $0.53 \AA$
3 $1.06 \stackrel{\circ}{\AA}$
4 $1.59 \AA$
ATOMS

145308 The angular momentum for the electron in Bohr's orbit is $L$. If the electron is assumed to revolve in second orbit of hydrogen atom, then the change in angular momentum will be:

1 $\frac{\mathrm{L}}{2}$
2 zero
3 $\mathrm{L}$
4 $2 \mathrm{~L}$
ATOMS

145309 A small particle of mass $m$ moves in such a way that its potential energy $U=\frac{1}{2} m \omega^{2} r^{2}$ where $\omega$ is constant and $r$ is the distance of the particle from origin Assuming Bohr's quantization of momentum and circular orbit, the radius of $n^{\text {th }}$ orbit will be proportional to

1 $\sqrt{\mathrm{n}}$
2 $n$
3 $\mathrm{n}^{2}$
4 $\frac{1}{n}$
ATOMS

145310 The radius of electron's second stationary orbit in Bohr's atom is $R$. The radius of 3rd orbit will be:

1 $\frac{\mathrm{R}}{3}$
2 $9 \mathrm{R}$
3 $2.25 \mathrm{R}$
4 $3 \mathrm{R}$
ATOMS

145311 Speed of an electron Bohr's $7^{\text {th }}$ orbit for Hydrogen atom is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The corresponding speed of the electron in $3^{\text {rd }}$ orbit, in $\mathbf{m} / \mathbf{s}$ is :

1 $3.6 \times 10^{6}$
2 $7.5 \times 10^{6}$
3 $1.8 \times 10^{6}$
4 $8.4 \times 10^{6}$
ATOMS

145307 The radius of inner most orbit of hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What is the radius of third allowed orbit of hydrogen atom?

1 $4.77 \stackrel{\circ}{\AA}$
2 $0.53 \AA$
3 $1.06 \stackrel{\circ}{\AA}$
4 $1.59 \AA$
ATOMS

145308 The angular momentum for the electron in Bohr's orbit is $L$. If the electron is assumed to revolve in second orbit of hydrogen atom, then the change in angular momentum will be:

1 $\frac{\mathrm{L}}{2}$
2 zero
3 $\mathrm{L}$
4 $2 \mathrm{~L}$
ATOMS

145309 A small particle of mass $m$ moves in such a way that its potential energy $U=\frac{1}{2} m \omega^{2} r^{2}$ where $\omega$ is constant and $r$ is the distance of the particle from origin Assuming Bohr's quantization of momentum and circular orbit, the radius of $n^{\text {th }}$ orbit will be proportional to

1 $\sqrt{\mathrm{n}}$
2 $n$
3 $\mathrm{n}^{2}$
4 $\frac{1}{n}$
ATOMS

145310 The radius of electron's second stationary orbit in Bohr's atom is $R$. The radius of 3rd orbit will be:

1 $\frac{\mathrm{R}}{3}$
2 $9 \mathrm{R}$
3 $2.25 \mathrm{R}$
4 $3 \mathrm{R}$
ATOMS

145311 Speed of an electron Bohr's $7^{\text {th }}$ orbit for Hydrogen atom is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The corresponding speed of the electron in $3^{\text {rd }}$ orbit, in $\mathbf{m} / \mathbf{s}$ is :

1 $3.6 \times 10^{6}$
2 $7.5 \times 10^{6}$
3 $1.8 \times 10^{6}$
4 $8.4 \times 10^{6}$
ATOMS

145307 The radius of inner most orbit of hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What is the radius of third allowed orbit of hydrogen atom?

1 $4.77 \stackrel{\circ}{\AA}$
2 $0.53 \AA$
3 $1.06 \stackrel{\circ}{\AA}$
4 $1.59 \AA$
ATOMS

145308 The angular momentum for the electron in Bohr's orbit is $L$. If the electron is assumed to revolve in second orbit of hydrogen atom, then the change in angular momentum will be:

1 $\frac{\mathrm{L}}{2}$
2 zero
3 $\mathrm{L}$
4 $2 \mathrm{~L}$
ATOMS

145309 A small particle of mass $m$ moves in such a way that its potential energy $U=\frac{1}{2} m \omega^{2} r^{2}$ where $\omega$ is constant and $r$ is the distance of the particle from origin Assuming Bohr's quantization of momentum and circular orbit, the radius of $n^{\text {th }}$ orbit will be proportional to

1 $\sqrt{\mathrm{n}}$
2 $n$
3 $\mathrm{n}^{2}$
4 $\frac{1}{n}$
ATOMS

145310 The radius of electron's second stationary orbit in Bohr's atom is $R$. The radius of 3rd orbit will be:

1 $\frac{\mathrm{R}}{3}$
2 $9 \mathrm{R}$
3 $2.25 \mathrm{R}$
4 $3 \mathrm{R}$
ATOMS

145311 Speed of an electron Bohr's $7^{\text {th }}$ orbit for Hydrogen atom is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The corresponding speed of the electron in $3^{\text {rd }}$ orbit, in $\mathbf{m} / \mathbf{s}$ is :

1 $3.6 \times 10^{6}$
2 $7.5 \times 10^{6}$
3 $1.8 \times 10^{6}$
4 $8.4 \times 10^{6}$
ATOMS

145307 The radius of inner most orbit of hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$. What is the radius of third allowed orbit of hydrogen atom?

1 $4.77 \stackrel{\circ}{\AA}$
2 $0.53 \AA$
3 $1.06 \stackrel{\circ}{\AA}$
4 $1.59 \AA$
ATOMS

145308 The angular momentum for the electron in Bohr's orbit is $L$. If the electron is assumed to revolve in second orbit of hydrogen atom, then the change in angular momentum will be:

1 $\frac{\mathrm{L}}{2}$
2 zero
3 $\mathrm{L}$
4 $2 \mathrm{~L}$
ATOMS

145309 A small particle of mass $m$ moves in such a way that its potential energy $U=\frac{1}{2} m \omega^{2} r^{2}$ where $\omega$ is constant and $r$ is the distance of the particle from origin Assuming Bohr's quantization of momentum and circular orbit, the radius of $n^{\text {th }}$ orbit will be proportional to

1 $\sqrt{\mathrm{n}}$
2 $n$
3 $\mathrm{n}^{2}$
4 $\frac{1}{n}$
ATOMS

145310 The radius of electron's second stationary orbit in Bohr's atom is $R$. The radius of 3rd orbit will be:

1 $\frac{\mathrm{R}}{3}$
2 $9 \mathrm{R}$
3 $2.25 \mathrm{R}$
4 $3 \mathrm{R}$
ATOMS

145311 Speed of an electron Bohr's $7^{\text {th }}$ orbit for Hydrogen atom is $3.6 \times 10^{6} \mathrm{~m} / \mathrm{s}$. The corresponding speed of the electron in $3^{\text {rd }}$ orbit, in $\mathbf{m} / \mathbf{s}$ is :

1 $3.6 \times 10^{6}$
2 $7.5 \times 10^{6}$
3 $1.8 \times 10^{6}$
4 $8.4 \times 10^{6}$