Structure of Atom
ATOMS

145291 The specific charge of an electron is

1 $1.6 \times 10^{-19}$ coulomb $/ \mathrm{kg}$
2 $4.8 \times 10^{-19}$ stat coulomb $/ \mathrm{kg}$
3 $1.76 \times 10^{-11}$ coulomb $/ \mathrm{kg}$
4 $1.76 \times 10^{11}$ coulomb $/ \mathrm{kg}$
ATOMS

145299 The ionization energy of $\mathrm{Li}^{2+}$ is equal to

1 $9 \mathrm{hcR}$
2 $6 \mathrm{hcR}$
3 $2 \mathrm{hcR}$
4 hcR
ATOMS

145300 A coin of mass $=3.11 \mathrm{~g}$ is made of pure copper whose molar mass is $63.5 \mathrm{~g} / \mathrm{mol}$. Total positive charge in the coin is $(Z=29)$ for copper and Avogadro's number is $\mathbf{6 . 0 2} \times 10^{23}$ atoms $/$ mole)

1 $137000 \mathrm{C}$
2 $157000 \mathrm{C}$
3 $197000 \mathrm{C}$
4 $127000 \mathrm{C}$
ATOMS

145239 If $v_{n}$ and $v_{p}$ are orbital velocities in $n^{\text {th }}$ and $p^{\text {th }}$ orbit respectively, then the ratio $v_{p}: v_{n}$ is

1 $\frac{n^{2}}{p^{2}}$
2 $\frac{\mathrm{p}}{\mathrm{n}}$
3 $\frac{\mathrm{p}^{2}}{\mathrm{n}^{2}}$
4 $\frac{\mathrm{n}}{\mathrm{p}}$
ATOMS

145250 For a light nuclei, which of the following relation between the atomic number $(Z)$ and mass number $(A)$ is valid?

1 $\mathrm{A}=\mathrm{Z} / 2$
2 $\mathrm{Z}=\mathrm{A}$
3 $\mathrm{Z}=\mathrm{A} / 2$
4 $Z=A^{2}$
5 $A=Z^{2}$
ATOMS

145291 The specific charge of an electron is

1 $1.6 \times 10^{-19}$ coulomb $/ \mathrm{kg}$
2 $4.8 \times 10^{-19}$ stat coulomb $/ \mathrm{kg}$
3 $1.76 \times 10^{-11}$ coulomb $/ \mathrm{kg}$
4 $1.76 \times 10^{11}$ coulomb $/ \mathrm{kg}$
ATOMS

145299 The ionization energy of $\mathrm{Li}^{2+}$ is equal to

1 $9 \mathrm{hcR}$
2 $6 \mathrm{hcR}$
3 $2 \mathrm{hcR}$
4 hcR
ATOMS

145300 A coin of mass $=3.11 \mathrm{~g}$ is made of pure copper whose molar mass is $63.5 \mathrm{~g} / \mathrm{mol}$. Total positive charge in the coin is $(Z=29)$ for copper and Avogadro's number is $\mathbf{6 . 0 2} \times 10^{23}$ atoms $/$ mole)

1 $137000 \mathrm{C}$
2 $157000 \mathrm{C}$
3 $197000 \mathrm{C}$
4 $127000 \mathrm{C}$
ATOMS

145239 If $v_{n}$ and $v_{p}$ are orbital velocities in $n^{\text {th }}$ and $p^{\text {th }}$ orbit respectively, then the ratio $v_{p}: v_{n}$ is

1 $\frac{n^{2}}{p^{2}}$
2 $\frac{\mathrm{p}}{\mathrm{n}}$
3 $\frac{\mathrm{p}^{2}}{\mathrm{n}^{2}}$
4 $\frac{\mathrm{n}}{\mathrm{p}}$
ATOMS

145250 For a light nuclei, which of the following relation between the atomic number $(Z)$ and mass number $(A)$ is valid?

1 $\mathrm{A}=\mathrm{Z} / 2$
2 $\mathrm{Z}=\mathrm{A}$
3 $\mathrm{Z}=\mathrm{A} / 2$
4 $Z=A^{2}$
5 $A=Z^{2}$
ATOMS

145291 The specific charge of an electron is

1 $1.6 \times 10^{-19}$ coulomb $/ \mathrm{kg}$
2 $4.8 \times 10^{-19}$ stat coulomb $/ \mathrm{kg}$
3 $1.76 \times 10^{-11}$ coulomb $/ \mathrm{kg}$
4 $1.76 \times 10^{11}$ coulomb $/ \mathrm{kg}$
ATOMS

145299 The ionization energy of $\mathrm{Li}^{2+}$ is equal to

1 $9 \mathrm{hcR}$
2 $6 \mathrm{hcR}$
3 $2 \mathrm{hcR}$
4 hcR
ATOMS

145300 A coin of mass $=3.11 \mathrm{~g}$ is made of pure copper whose molar mass is $63.5 \mathrm{~g} / \mathrm{mol}$. Total positive charge in the coin is $(Z=29)$ for copper and Avogadro's number is $\mathbf{6 . 0 2} \times 10^{23}$ atoms $/$ mole)

1 $137000 \mathrm{C}$
2 $157000 \mathrm{C}$
3 $197000 \mathrm{C}$
4 $127000 \mathrm{C}$
ATOMS

145239 If $v_{n}$ and $v_{p}$ are orbital velocities in $n^{\text {th }}$ and $p^{\text {th }}$ orbit respectively, then the ratio $v_{p}: v_{n}$ is

1 $\frac{n^{2}}{p^{2}}$
2 $\frac{\mathrm{p}}{\mathrm{n}}$
3 $\frac{\mathrm{p}^{2}}{\mathrm{n}^{2}}$
4 $\frac{\mathrm{n}}{\mathrm{p}}$
ATOMS

145250 For a light nuclei, which of the following relation between the atomic number $(Z)$ and mass number $(A)$ is valid?

1 $\mathrm{A}=\mathrm{Z} / 2$
2 $\mathrm{Z}=\mathrm{A}$
3 $\mathrm{Z}=\mathrm{A} / 2$
4 $Z=A^{2}$
5 $A=Z^{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ATOMS

145291 The specific charge of an electron is

1 $1.6 \times 10^{-19}$ coulomb $/ \mathrm{kg}$
2 $4.8 \times 10^{-19}$ stat coulomb $/ \mathrm{kg}$
3 $1.76 \times 10^{-11}$ coulomb $/ \mathrm{kg}$
4 $1.76 \times 10^{11}$ coulomb $/ \mathrm{kg}$
ATOMS

145299 The ionization energy of $\mathrm{Li}^{2+}$ is equal to

1 $9 \mathrm{hcR}$
2 $6 \mathrm{hcR}$
3 $2 \mathrm{hcR}$
4 hcR
ATOMS

145300 A coin of mass $=3.11 \mathrm{~g}$ is made of pure copper whose molar mass is $63.5 \mathrm{~g} / \mathrm{mol}$. Total positive charge in the coin is $(Z=29)$ for copper and Avogadro's number is $\mathbf{6 . 0 2} \times 10^{23}$ atoms $/$ mole)

1 $137000 \mathrm{C}$
2 $157000 \mathrm{C}$
3 $197000 \mathrm{C}$
4 $127000 \mathrm{C}$
ATOMS

145239 If $v_{n}$ and $v_{p}$ are orbital velocities in $n^{\text {th }}$ and $p^{\text {th }}$ orbit respectively, then the ratio $v_{p}: v_{n}$ is

1 $\frac{n^{2}}{p^{2}}$
2 $\frac{\mathrm{p}}{\mathrm{n}}$
3 $\frac{\mathrm{p}^{2}}{\mathrm{n}^{2}}$
4 $\frac{\mathrm{n}}{\mathrm{p}}$
ATOMS

145250 For a light nuclei, which of the following relation between the atomic number $(Z)$ and mass number $(A)$ is valid?

1 $\mathrm{A}=\mathrm{Z} / 2$
2 $\mathrm{Z}=\mathrm{A}$
3 $\mathrm{Z}=\mathrm{A} / 2$
4 $Z=A^{2}$
5 $A=Z^{2}$
ATOMS

145291 The specific charge of an electron is

1 $1.6 \times 10^{-19}$ coulomb $/ \mathrm{kg}$
2 $4.8 \times 10^{-19}$ stat coulomb $/ \mathrm{kg}$
3 $1.76 \times 10^{-11}$ coulomb $/ \mathrm{kg}$
4 $1.76 \times 10^{11}$ coulomb $/ \mathrm{kg}$
ATOMS

145299 The ionization energy of $\mathrm{Li}^{2+}$ is equal to

1 $9 \mathrm{hcR}$
2 $6 \mathrm{hcR}$
3 $2 \mathrm{hcR}$
4 hcR
ATOMS

145300 A coin of mass $=3.11 \mathrm{~g}$ is made of pure copper whose molar mass is $63.5 \mathrm{~g} / \mathrm{mol}$. Total positive charge in the coin is $(Z=29)$ for copper and Avogadro's number is $\mathbf{6 . 0 2} \times 10^{23}$ atoms $/$ mole)

1 $137000 \mathrm{C}$
2 $157000 \mathrm{C}$
3 $197000 \mathrm{C}$
4 $127000 \mathrm{C}$
ATOMS

145239 If $v_{n}$ and $v_{p}$ are orbital velocities in $n^{\text {th }}$ and $p^{\text {th }}$ orbit respectively, then the ratio $v_{p}: v_{n}$ is

1 $\frac{n^{2}}{p^{2}}$
2 $\frac{\mathrm{p}}{\mathrm{n}}$
3 $\frac{\mathrm{p}^{2}}{\mathrm{n}^{2}}$
4 $\frac{\mathrm{n}}{\mathrm{p}}$
ATOMS

145250 For a light nuclei, which of the following relation between the atomic number $(Z)$ and mass number $(A)$ is valid?

1 $\mathrm{A}=\mathrm{Z} / 2$
2 $\mathrm{Z}=\mathrm{A}$
3 $\mathrm{Z}=\mathrm{A} / 2$
4 $Z=A^{2}$
5 $A=Z^{2}$