Structure of Atom
ATOMS

145246 The frequency of $K_{a}$ line of a source of atomic number $z$ is proportional to

1 $\mathrm{z}^{2}$
2 $(z-1)^{2}$
3 $\frac{1}{\mathrm{z}}$
4 $\mathrm{z}$
ATOMS

145247 If the kinetic energy of an electron of mass 9.0 $\times 10^{-31} \mathrm{~kg}$ is $8.0 \times 10^{-25} \mathrm{~J}$, the wavelength of this electron in $\mathrm{nm}$ is

1 11104.1
2 276.2
3 552.2
4 828.4
ATOMS

145248 If the radius of ${ }^{27} \mathrm{Al}$ nucleus is $R_{1}$, then the radius of ${ }_{33}^{125} \mathrm{Te}$ will be

1 $\frac{5}{3} \mathrm{R}_{1}$
2 $\frac{3}{5} \mathrm{R}_{1}$
3 $\left(\frac{13}{53}\right)^{1 / 2} \mathrm{R}_{1}$
4 $\left(\frac{53}{13}\right)^{1 / 3} \mathrm{R}_{1}$
ATOMS

145249 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would be

1 60
2 32
3 4
4 64
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
ATOMS

145246 The frequency of $K_{a}$ line of a source of atomic number $z$ is proportional to

1 $\mathrm{z}^{2}$
2 $(z-1)^{2}$
3 $\frac{1}{\mathrm{z}}$
4 $\mathrm{z}$
ATOMS

145247 If the kinetic energy of an electron of mass 9.0 $\times 10^{-31} \mathrm{~kg}$ is $8.0 \times 10^{-25} \mathrm{~J}$, the wavelength of this electron in $\mathrm{nm}$ is

1 11104.1
2 276.2
3 552.2
4 828.4
ATOMS

145248 If the radius of ${ }^{27} \mathrm{Al}$ nucleus is $R_{1}$, then the radius of ${ }_{33}^{125} \mathrm{Te}$ will be

1 $\frac{5}{3} \mathrm{R}_{1}$
2 $\frac{3}{5} \mathrm{R}_{1}$
3 $\left(\frac{13}{53}\right)^{1 / 2} \mathrm{R}_{1}$
4 $\left(\frac{53}{13}\right)^{1 / 3} \mathrm{R}_{1}$
ATOMS

145249 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would be

1 60
2 32
3 4
4 64
ATOMS

145246 The frequency of $K_{a}$ line of a source of atomic number $z$ is proportional to

1 $\mathrm{z}^{2}$
2 $(z-1)^{2}$
3 $\frac{1}{\mathrm{z}}$
4 $\mathrm{z}$
ATOMS

145247 If the kinetic energy of an electron of mass 9.0 $\times 10^{-31} \mathrm{~kg}$ is $8.0 \times 10^{-25} \mathrm{~J}$, the wavelength of this electron in $\mathrm{nm}$ is

1 11104.1
2 276.2
3 552.2
4 828.4
ATOMS

145248 If the radius of ${ }^{27} \mathrm{Al}$ nucleus is $R_{1}$, then the radius of ${ }_{33}^{125} \mathrm{Te}$ will be

1 $\frac{5}{3} \mathrm{R}_{1}$
2 $\frac{3}{5} \mathrm{R}_{1}$
3 $\left(\frac{13}{53}\right)^{1 / 2} \mathrm{R}_{1}$
4 $\left(\frac{53}{13}\right)^{1 / 3} \mathrm{R}_{1}$
ATOMS

145249 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would be

1 60
2 32
3 4
4 64
ATOMS

145246 The frequency of $K_{a}$ line of a source of atomic number $z$ is proportional to

1 $\mathrm{z}^{2}$
2 $(z-1)^{2}$
3 $\frac{1}{\mathrm{z}}$
4 $\mathrm{z}$
ATOMS

145247 If the kinetic energy of an electron of mass 9.0 $\times 10^{-31} \mathrm{~kg}$ is $8.0 \times 10^{-25} \mathrm{~J}$, the wavelength of this electron in $\mathrm{nm}$ is

1 11104.1
2 276.2
3 552.2
4 828.4
ATOMS

145248 If the radius of ${ }^{27} \mathrm{Al}$ nucleus is $R_{1}$, then the radius of ${ }_{33}^{125} \mathrm{Te}$ will be

1 $\frac{5}{3} \mathrm{R}_{1}$
2 $\frac{3}{5} \mathrm{R}_{1}$
3 $\left(\frac{13}{53}\right)^{1 / 2} \mathrm{R}_{1}$
4 $\left(\frac{53}{13}\right)^{1 / 3} \mathrm{R}_{1}$
ATOMS

145249 If elements with principal quantum number $n$ $>4$ were not allowed in nature, the number of possible elements would be

1 60
2 32
3 4
4 64