Law of Radioactive decay
NUCLEAR PHYSICS

147811 Two different radioactive elements with halflives ' $T_{1}$ ' and ' $T_{2}$ ' have undecayed atoms ' $N_{1}$ ' and ' $\mathrm{N}_{2}$ ' respectively, present at a given instant. The ratio of their activities at this instant is

1 $\frac{\mathrm{N}_{1} \mathrm{~T}_{2}}{\mathrm{~N}_{2} \mathrm{~T}_{1}}$
2 $\frac{\mathrm{N}_{1} \mathrm{~T}_{1}}{\mathrm{~N}_{2} \mathrm{~T}_{2}}$
3 $\frac{\mathrm{N}_{1} \mathrm{~N}_{2}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}$
4 $\frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~N}_{1} \mathrm{~N}_{2}}$
NUCLEAR PHYSICS

147812 If $75 \%$ of a radioactive sample disintegrates in 16 days, the half-life of the radioactive sample is .......... days.

1 6
2 4
3 8
4 12
NUCLEAR PHYSICS

147813 The half-life of radioactive sample is $T$. The fraction of the initial mass of the sample that decays in an interval $T / 2$ is

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{(\sqrt{2}-1)}{\sqrt{2}}$
4 $\frac{(\sqrt{2}+1)}{\sqrt{2}}$
NUCLEAR PHYSICS

147814 The rate of radioactive disintegration at an instant for a radioactive sample of half life $\mathbf{2 . 2}$ $\times 10^{9} \mathrm{~s}$ is $10^{10} \mathrm{~s}^{-1}$. The number of radioactive atoms in that sample at that instant is

1 $3.17 \times 10^{20}$
2 $3.17 \times 10^{17}$
3 $3.17 \times 10^{18}$
4 $3.17 \times 10^{19}$
NUCLEAR PHYSICS

147811 Two different radioactive elements with halflives ' $T_{1}$ ' and ' $T_{2}$ ' have undecayed atoms ' $N_{1}$ ' and ' $\mathrm{N}_{2}$ ' respectively, present at a given instant. The ratio of their activities at this instant is

1 $\frac{\mathrm{N}_{1} \mathrm{~T}_{2}}{\mathrm{~N}_{2} \mathrm{~T}_{1}}$
2 $\frac{\mathrm{N}_{1} \mathrm{~T}_{1}}{\mathrm{~N}_{2} \mathrm{~T}_{2}}$
3 $\frac{\mathrm{N}_{1} \mathrm{~N}_{2}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}$
4 $\frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~N}_{1} \mathrm{~N}_{2}}$
NUCLEAR PHYSICS

147812 If $75 \%$ of a radioactive sample disintegrates in 16 days, the half-life of the radioactive sample is .......... days.

1 6
2 4
3 8
4 12
NUCLEAR PHYSICS

147813 The half-life of radioactive sample is $T$. The fraction of the initial mass of the sample that decays in an interval $T / 2$ is

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{(\sqrt{2}-1)}{\sqrt{2}}$
4 $\frac{(\sqrt{2}+1)}{\sqrt{2}}$
NUCLEAR PHYSICS

147814 The rate of radioactive disintegration at an instant for a radioactive sample of half life $\mathbf{2 . 2}$ $\times 10^{9} \mathrm{~s}$ is $10^{10} \mathrm{~s}^{-1}$. The number of radioactive atoms in that sample at that instant is

1 $3.17 \times 10^{20}$
2 $3.17 \times 10^{17}$
3 $3.17 \times 10^{18}$
4 $3.17 \times 10^{19}$
NUCLEAR PHYSICS

147811 Two different radioactive elements with halflives ' $T_{1}$ ' and ' $T_{2}$ ' have undecayed atoms ' $N_{1}$ ' and ' $\mathrm{N}_{2}$ ' respectively, present at a given instant. The ratio of their activities at this instant is

1 $\frac{\mathrm{N}_{1} \mathrm{~T}_{2}}{\mathrm{~N}_{2} \mathrm{~T}_{1}}$
2 $\frac{\mathrm{N}_{1} \mathrm{~T}_{1}}{\mathrm{~N}_{2} \mathrm{~T}_{2}}$
3 $\frac{\mathrm{N}_{1} \mathrm{~N}_{2}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}$
4 $\frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~N}_{1} \mathrm{~N}_{2}}$
NUCLEAR PHYSICS

147812 If $75 \%$ of a radioactive sample disintegrates in 16 days, the half-life of the radioactive sample is .......... days.

1 6
2 4
3 8
4 12
NUCLEAR PHYSICS

147813 The half-life of radioactive sample is $T$. The fraction of the initial mass of the sample that decays in an interval $T / 2$ is

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{(\sqrt{2}-1)}{\sqrt{2}}$
4 $\frac{(\sqrt{2}+1)}{\sqrt{2}}$
NUCLEAR PHYSICS

147814 The rate of radioactive disintegration at an instant for a radioactive sample of half life $\mathbf{2 . 2}$ $\times 10^{9} \mathrm{~s}$ is $10^{10} \mathrm{~s}^{-1}$. The number of radioactive atoms in that sample at that instant is

1 $3.17 \times 10^{20}$
2 $3.17 \times 10^{17}$
3 $3.17 \times 10^{18}$
4 $3.17 \times 10^{19}$
NUCLEAR PHYSICS

147811 Two different radioactive elements with halflives ' $T_{1}$ ' and ' $T_{2}$ ' have undecayed atoms ' $N_{1}$ ' and ' $\mathrm{N}_{2}$ ' respectively, present at a given instant. The ratio of their activities at this instant is

1 $\frac{\mathrm{N}_{1} \mathrm{~T}_{2}}{\mathrm{~N}_{2} \mathrm{~T}_{1}}$
2 $\frac{\mathrm{N}_{1} \mathrm{~T}_{1}}{\mathrm{~N}_{2} \mathrm{~T}_{2}}$
3 $\frac{\mathrm{N}_{1} \mathrm{~N}_{2}}{\mathrm{~T}_{1} \mathrm{~T}_{2}}$
4 $\frac{\mathrm{T}_{1} \mathrm{~T}_{2}}{\mathrm{~N}_{1} \mathrm{~N}_{2}}$
NUCLEAR PHYSICS

147812 If $75 \%$ of a radioactive sample disintegrates in 16 days, the half-life of the radioactive sample is .......... days.

1 6
2 4
3 8
4 12
NUCLEAR PHYSICS

147813 The half-life of radioactive sample is $T$. The fraction of the initial mass of the sample that decays in an interval $T / 2$ is

1 $\frac{1}{\sqrt{2}}$
2 $\sqrt{2}$
3 $\frac{(\sqrt{2}-1)}{\sqrt{2}}$
4 $\frac{(\sqrt{2}+1)}{\sqrt{2}}$
NUCLEAR PHYSICS

147814 The rate of radioactive disintegration at an instant for a radioactive sample of half life $\mathbf{2 . 2}$ $\times 10^{9} \mathrm{~s}$ is $10^{10} \mathrm{~s}^{-1}$. The number of radioactive atoms in that sample at that instant is

1 $3.17 \times 10^{20}$
2 $3.17 \times 10^{17}$
3 $3.17 \times 10^{18}$
4 $3.17 \times 10^{19}$