Law of Radioactive decay
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147866 The activity of a radioactive element decreased to one- third of the original activity $I_{0}$ in a period of nine years. After a further lapse of nine years its activity will be

1 $\mathrm{I}_{0}$
2 $\left(\frac{2}{3}\right) \mathrm{I}_{0}$
3 $\frac{\mathrm{I}_{0}}{9}$
4 $\frac{I_{0}}{6}$
NUCLEAR PHYSICS

147867 The half-life of ${ }^{215} \mathrm{At}$ is $100 \mu \mathrm{s}$. The time taken for the radioactivity of a sample of this nucleus to decay to $\frac{1}{16}$ th of its initial value is

1 $6.3 \mu \mathrm{s}$
2 $40 \mu \mathrm{s}$
3 $300 \mu \mathrm{s}$
4 $400 \mu \mathrm{s}$
NUCLEAR PHYSICS

147868 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then

1 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{-\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147869 If $8 \mathrm{~g}$ of a radioactive substance decays into 0.5 $\mathrm{g}$ in $\mathbf{1 ~} \mathrm{h}$, then the half-life of the substance is

1 $45 \mathrm{~min}$
2 $15 \mathrm{~min}$
3 $10 \mathrm{~min}$
4 $30 \mathrm{~min}$
NUCLEAR PHYSICS

147866 The activity of a radioactive element decreased to one- third of the original activity $I_{0}$ in a period of nine years. After a further lapse of nine years its activity will be

1 $\mathrm{I}_{0}$
2 $\left(\frac{2}{3}\right) \mathrm{I}_{0}$
3 $\frac{\mathrm{I}_{0}}{9}$
4 $\frac{I_{0}}{6}$
NUCLEAR PHYSICS

147867 The half-life of ${ }^{215} \mathrm{At}$ is $100 \mu \mathrm{s}$. The time taken for the radioactivity of a sample of this nucleus to decay to $\frac{1}{16}$ th of its initial value is

1 $6.3 \mu \mathrm{s}$
2 $40 \mu \mathrm{s}$
3 $300 \mu \mathrm{s}$
4 $400 \mu \mathrm{s}$
NUCLEAR PHYSICS

147868 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then

1 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{-\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147869 If $8 \mathrm{~g}$ of a radioactive substance decays into 0.5 $\mathrm{g}$ in $\mathbf{1 ~} \mathrm{h}$, then the half-life of the substance is

1 $45 \mathrm{~min}$
2 $15 \mathrm{~min}$
3 $10 \mathrm{~min}$
4 $30 \mathrm{~min}$
NUCLEAR PHYSICS

147866 The activity of a radioactive element decreased to one- third of the original activity $I_{0}$ in a period of nine years. After a further lapse of nine years its activity will be

1 $\mathrm{I}_{0}$
2 $\left(\frac{2}{3}\right) \mathrm{I}_{0}$
3 $\frac{\mathrm{I}_{0}}{9}$
4 $\frac{I_{0}}{6}$
NUCLEAR PHYSICS

147867 The half-life of ${ }^{215} \mathrm{At}$ is $100 \mu \mathrm{s}$. The time taken for the radioactivity of a sample of this nucleus to decay to $\frac{1}{16}$ th of its initial value is

1 $6.3 \mu \mathrm{s}$
2 $40 \mu \mathrm{s}$
3 $300 \mu \mathrm{s}$
4 $400 \mu \mathrm{s}$
NUCLEAR PHYSICS

147868 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then

1 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{-\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147869 If $8 \mathrm{~g}$ of a radioactive substance decays into 0.5 $\mathrm{g}$ in $\mathbf{1 ~} \mathrm{h}$, then the half-life of the substance is

1 $45 \mathrm{~min}$
2 $15 \mathrm{~min}$
3 $10 \mathrm{~min}$
4 $30 \mathrm{~min}$
NUCLEAR PHYSICS

147866 The activity of a radioactive element decreased to one- third of the original activity $I_{0}$ in a period of nine years. After a further lapse of nine years its activity will be

1 $\mathrm{I}_{0}$
2 $\left(\frac{2}{3}\right) \mathrm{I}_{0}$
3 $\frac{\mathrm{I}_{0}}{9}$
4 $\frac{I_{0}}{6}$
NUCLEAR PHYSICS

147867 The half-life of ${ }^{215} \mathrm{At}$ is $100 \mu \mathrm{s}$. The time taken for the radioactivity of a sample of this nucleus to decay to $\frac{1}{16}$ th of its initial value is

1 $6.3 \mu \mathrm{s}$
2 $40 \mu \mathrm{s}$
3 $300 \mu \mathrm{s}$
4 $400 \mu \mathrm{s}$
NUCLEAR PHYSICS

147868 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then

1 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{-\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147869 If $8 \mathrm{~g}$ of a radioactive substance decays into 0.5 $\mathrm{g}$ in $\mathbf{1 ~} \mathrm{h}$, then the half-life of the substance is

1 $45 \mathrm{~min}$
2 $15 \mathrm{~min}$
3 $10 \mathrm{~min}$
4 $30 \mathrm{~min}$