Radioactivity
NUCLEAR PHYSICS

147665 A radioactive element $X$ converts into another stable element $Y$. Half life of $X$ is 2 hrs. Initially only $X$ is present. After time $t$, the ratio of atoms of $X$ and $Y$ is found to be $1: 4$, then $t$ in hours is

1 2
2 4
3 between 4 and 6
4 6
NUCLEAR PHYSICS

147667 If the decay constant of a radioactive substance is $\lambda$, then its half-life and mean life are respectively

1 $\frac{1}{\lambda}$ and $\frac{\log _{\mathrm{e}} 2}{\lambda}$
2 $\frac{\log _{\mathrm{e}} 2}{\lambda}$ and $\frac{1}{\lambda}$
3 $\lambda \log _{\mathrm{e}} 2$ and $\frac{1}{\lambda}$
4 $\frac{\lambda}{\log _{\mathrm{e}} 2}$ and $\frac{1}{\lambda}$
NUCLEAR PHYSICS

147668 Half - life of radioactive substance is $3.20 \mathrm{~h}$. What is the time taken for a $75 \%$ of substance to be used?

1 $6.38 \mathrm{~h}$
2 $12 \mathrm{~h}$
3 $4.18 \mathrm{~h}$
4 $1.2 \mathrm{~h}$
NUCLEAR PHYSICS

147670 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then :

1 $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147671 A radioactive material has a half - life of $8 \mathrm{yr}$. The activity of the material will decrease to about $1 / 8$ of its original value in :

1 $256 \mathrm{yr}$
2 $128 \mathrm{yr}$
3 $64 \mathrm{yr}$
4 $24 \mathrm{yr}$
NUCLEAR PHYSICS

147665 A radioactive element $X$ converts into another stable element $Y$. Half life of $X$ is 2 hrs. Initially only $X$ is present. After time $t$, the ratio of atoms of $X$ and $Y$ is found to be $1: 4$, then $t$ in hours is

1 2
2 4
3 between 4 and 6
4 6
NUCLEAR PHYSICS

147667 If the decay constant of a radioactive substance is $\lambda$, then its half-life and mean life are respectively

1 $\frac{1}{\lambda}$ and $\frac{\log _{\mathrm{e}} 2}{\lambda}$
2 $\frac{\log _{\mathrm{e}} 2}{\lambda}$ and $\frac{1}{\lambda}$
3 $\lambda \log _{\mathrm{e}} 2$ and $\frac{1}{\lambda}$
4 $\frac{\lambda}{\log _{\mathrm{e}} 2}$ and $\frac{1}{\lambda}$
NUCLEAR PHYSICS

147668 Half - life of radioactive substance is $3.20 \mathrm{~h}$. What is the time taken for a $75 \%$ of substance to be used?

1 $6.38 \mathrm{~h}$
2 $12 \mathrm{~h}$
3 $4.18 \mathrm{~h}$
4 $1.2 \mathrm{~h}$
NUCLEAR PHYSICS

147670 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then :

1 $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147671 A radioactive material has a half - life of $8 \mathrm{yr}$. The activity of the material will decrease to about $1 / 8$ of its original value in :

1 $256 \mathrm{yr}$
2 $128 \mathrm{yr}$
3 $64 \mathrm{yr}$
4 $24 \mathrm{yr}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
NUCLEAR PHYSICS

147665 A radioactive element $X$ converts into another stable element $Y$. Half life of $X$ is 2 hrs. Initially only $X$ is present. After time $t$, the ratio of atoms of $X$ and $Y$ is found to be $1: 4$, then $t$ in hours is

1 2
2 4
3 between 4 and 6
4 6
NUCLEAR PHYSICS

147667 If the decay constant of a radioactive substance is $\lambda$, then its half-life and mean life are respectively

1 $\frac{1}{\lambda}$ and $\frac{\log _{\mathrm{e}} 2}{\lambda}$
2 $\frac{\log _{\mathrm{e}} 2}{\lambda}$ and $\frac{1}{\lambda}$
3 $\lambda \log _{\mathrm{e}} 2$ and $\frac{1}{\lambda}$
4 $\frac{\lambda}{\log _{\mathrm{e}} 2}$ and $\frac{1}{\lambda}$
NUCLEAR PHYSICS

147668 Half - life of radioactive substance is $3.20 \mathrm{~h}$. What is the time taken for a $75 \%$ of substance to be used?

1 $6.38 \mathrm{~h}$
2 $12 \mathrm{~h}$
3 $4.18 \mathrm{~h}$
4 $1.2 \mathrm{~h}$
NUCLEAR PHYSICS

147670 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then :

1 $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147671 A radioactive material has a half - life of $8 \mathrm{yr}$. The activity of the material will decrease to about $1 / 8$ of its original value in :

1 $256 \mathrm{yr}$
2 $128 \mathrm{yr}$
3 $64 \mathrm{yr}$
4 $24 \mathrm{yr}$
NUCLEAR PHYSICS

147665 A radioactive element $X$ converts into another stable element $Y$. Half life of $X$ is 2 hrs. Initially only $X$ is present. After time $t$, the ratio of atoms of $X$ and $Y$ is found to be $1: 4$, then $t$ in hours is

1 2
2 4
3 between 4 and 6
4 6
NUCLEAR PHYSICS

147667 If the decay constant of a radioactive substance is $\lambda$, then its half-life and mean life are respectively

1 $\frac{1}{\lambda}$ and $\frac{\log _{\mathrm{e}} 2}{\lambda}$
2 $\frac{\log _{\mathrm{e}} 2}{\lambda}$ and $\frac{1}{\lambda}$
3 $\lambda \log _{\mathrm{e}} 2$ and $\frac{1}{\lambda}$
4 $\frac{\lambda}{\log _{\mathrm{e}} 2}$ and $\frac{1}{\lambda}$
NUCLEAR PHYSICS

147668 Half - life of radioactive substance is $3.20 \mathrm{~h}$. What is the time taken for a $75 \%$ of substance to be used?

1 $6.38 \mathrm{~h}$
2 $12 \mathrm{~h}$
3 $4.18 \mathrm{~h}$
4 $1.2 \mathrm{~h}$
NUCLEAR PHYSICS

147670 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then :

1 $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147671 A radioactive material has a half - life of $8 \mathrm{yr}$. The activity of the material will decrease to about $1 / 8$ of its original value in :

1 $256 \mathrm{yr}$
2 $128 \mathrm{yr}$
3 $64 \mathrm{yr}$
4 $24 \mathrm{yr}$
NUCLEAR PHYSICS

147665 A radioactive element $X$ converts into another stable element $Y$. Half life of $X$ is 2 hrs. Initially only $X$ is present. After time $t$, the ratio of atoms of $X$ and $Y$ is found to be $1: 4$, then $t$ in hours is

1 2
2 4
3 between 4 and 6
4 6
NUCLEAR PHYSICS

147667 If the decay constant of a radioactive substance is $\lambda$, then its half-life and mean life are respectively

1 $\frac{1}{\lambda}$ and $\frac{\log _{\mathrm{e}} 2}{\lambda}$
2 $\frac{\log _{\mathrm{e}} 2}{\lambda}$ and $\frac{1}{\lambda}$
3 $\lambda \log _{\mathrm{e}} 2$ and $\frac{1}{\lambda}$
4 $\frac{\lambda}{\log _{\mathrm{e}} 2}$ and $\frac{1}{\lambda}$
NUCLEAR PHYSICS

147668 Half - life of radioactive substance is $3.20 \mathrm{~h}$. What is the time taken for a $75 \%$ of substance to be used?

1 $6.38 \mathrm{~h}$
2 $12 \mathrm{~h}$
3 $4.18 \mathrm{~h}$
4 $1.2 \mathrm{~h}$
NUCLEAR PHYSICS

147670 In a radioactive material the activity at time $t_{1}$ is $R_{1}$ and at a later time $t_{2}$, it is $R_{2}$. If the decay constant of the material is $\lambda$, then :

1 $R_{1}=R_{2} e^{-\lambda\left(t_{1}-t_{2}\right)}$
2 $\mathrm{R}_{1}=\mathrm{R}_{2} \mathrm{e}^{\lambda\left(\mathrm{t}_{1}-\mathrm{t}_{2}\right)}$
3 $\mathrm{R}_{1}=\mathrm{R}_{2}\left(\mathrm{t}_{2} / \mathrm{t}_{1}\right)$
4 $\mathrm{R}_{1}=\mathrm{R}_{2}$
NUCLEAR PHYSICS

147671 A radioactive material has a half - life of $8 \mathrm{yr}$. The activity of the material will decrease to about $1 / 8$ of its original value in :

1 $256 \mathrm{yr}$
2 $128 \mathrm{yr}$
3 $64 \mathrm{yr}$
4 $24 \mathrm{yr}$