Radioactivity
NUCLEAR PHYSICS

147555 The half life of a radioactive substance is 20 minutes. In how much time, the activity of substance drops to $\left(\frac{1}{16}\right)^{\text {th }}$ of its initial value ?

1 80 minutes
2 20 minutes
3 40 minutes
4 60 minutes
NUCLEAR PHYSICS

147556 ${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$

1 $3.82 \mathrm{MeV}$
2 $5.9 \mathrm{MeV}$
3 $2.12 \mathrm{MeV}$
4 $4.25 \mathrm{MeV}$
NUCLEAR PHYSICS

147557 A radio-active material is reduced to $1 / 8$ of its original amount in 3 days. If $8 \times 10^{-3} \mathrm{~kg}$ of the material is left after 5 days. The initial amount of the material is

1 $64 \mathrm{~g}$
2 $40 \mathrm{~g}$
3 $32 \mathrm{~g}$
4 $256 \mathrm{~g}$
NUCLEAR PHYSICS

147559 The half-life of a radioactive substance is $T$. The time taken, for disintegrating $\frac{7}{8}$ th part of its original mass will be:

1 $3 \mathrm{~T}$
2 $8 \mathrm{~T}$
3 $\mathrm{T}$
4 $2 \mathrm{~T}$
NUCLEAR PHYSICS

147560 The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in $\mathbf{1 5}$ years is:

1 $\frac{1}{8}$
2 $\frac{1}{4}$
3 $\frac{7}{8}$
4 $\frac{3}{4}$
NUCLEAR PHYSICS

147555 The half life of a radioactive substance is 20 minutes. In how much time, the activity of substance drops to $\left(\frac{1}{16}\right)^{\text {th }}$ of its initial value ?

1 80 minutes
2 20 minutes
3 40 minutes
4 60 minutes
NUCLEAR PHYSICS

147556 ${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$

1 $3.82 \mathrm{MeV}$
2 $5.9 \mathrm{MeV}$
3 $2.12 \mathrm{MeV}$
4 $4.25 \mathrm{MeV}$
NUCLEAR PHYSICS

147557 A radio-active material is reduced to $1 / 8$ of its original amount in 3 days. If $8 \times 10^{-3} \mathrm{~kg}$ of the material is left after 5 days. The initial amount of the material is

1 $64 \mathrm{~g}$
2 $40 \mathrm{~g}$
3 $32 \mathrm{~g}$
4 $256 \mathrm{~g}$
NUCLEAR PHYSICS

147559 The half-life of a radioactive substance is $T$. The time taken, for disintegrating $\frac{7}{8}$ th part of its original mass will be:

1 $3 \mathrm{~T}$
2 $8 \mathrm{~T}$
3 $\mathrm{T}$
4 $2 \mathrm{~T}$
NUCLEAR PHYSICS

147560 The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in $\mathbf{1 5}$ years is:

1 $\frac{1}{8}$
2 $\frac{1}{4}$
3 $\frac{7}{8}$
4 $\frac{3}{4}$
NUCLEAR PHYSICS

147555 The half life of a radioactive substance is 20 minutes. In how much time, the activity of substance drops to $\left(\frac{1}{16}\right)^{\text {th }}$ of its initial value ?

1 80 minutes
2 20 minutes
3 40 minutes
4 60 minutes
NUCLEAR PHYSICS

147556 ${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$

1 $3.82 \mathrm{MeV}$
2 $5.9 \mathrm{MeV}$
3 $2.12 \mathrm{MeV}$
4 $4.25 \mathrm{MeV}$
NUCLEAR PHYSICS

147557 A radio-active material is reduced to $1 / 8$ of its original amount in 3 days. If $8 \times 10^{-3} \mathrm{~kg}$ of the material is left after 5 days. The initial amount of the material is

1 $64 \mathrm{~g}$
2 $40 \mathrm{~g}$
3 $32 \mathrm{~g}$
4 $256 \mathrm{~g}$
NUCLEAR PHYSICS

147559 The half-life of a radioactive substance is $T$. The time taken, for disintegrating $\frac{7}{8}$ th part of its original mass will be:

1 $3 \mathrm{~T}$
2 $8 \mathrm{~T}$
3 $\mathrm{T}$
4 $2 \mathrm{~T}$
NUCLEAR PHYSICS

147560 The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in $\mathbf{1 5}$ years is:

1 $\frac{1}{8}$
2 $\frac{1}{4}$
3 $\frac{7}{8}$
4 $\frac{3}{4}$
NUCLEAR PHYSICS

147555 The half life of a radioactive substance is 20 minutes. In how much time, the activity of substance drops to $\left(\frac{1}{16}\right)^{\text {th }}$ of its initial value ?

1 80 minutes
2 20 minutes
3 40 minutes
4 60 minutes
NUCLEAR PHYSICS

147556 ${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$

1 $3.82 \mathrm{MeV}$
2 $5.9 \mathrm{MeV}$
3 $2.12 \mathrm{MeV}$
4 $4.25 \mathrm{MeV}$
NUCLEAR PHYSICS

147557 A radio-active material is reduced to $1 / 8$ of its original amount in 3 days. If $8 \times 10^{-3} \mathrm{~kg}$ of the material is left after 5 days. The initial amount of the material is

1 $64 \mathrm{~g}$
2 $40 \mathrm{~g}$
3 $32 \mathrm{~g}$
4 $256 \mathrm{~g}$
NUCLEAR PHYSICS

147559 The half-life of a radioactive substance is $T$. The time taken, for disintegrating $\frac{7}{8}$ th part of its original mass will be:

1 $3 \mathrm{~T}$
2 $8 \mathrm{~T}$
3 $\mathrm{T}$
4 $2 \mathrm{~T}$
NUCLEAR PHYSICS

147560 The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in $\mathbf{1 5}$ years is:

1 $\frac{1}{8}$
2 $\frac{1}{4}$
3 $\frac{7}{8}$
4 $\frac{3}{4}$
NUCLEAR PHYSICS

147555 The half life of a radioactive substance is 20 minutes. In how much time, the activity of substance drops to $\left(\frac{1}{16}\right)^{\text {th }}$ of its initial value ?

1 80 minutes
2 20 minutes
3 40 minutes
4 60 minutes
NUCLEAR PHYSICS

147556 ${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$

1 $3.82 \mathrm{MeV}$
2 $5.9 \mathrm{MeV}$
3 $2.12 \mathrm{MeV}$
4 $4.25 \mathrm{MeV}$
NUCLEAR PHYSICS

147557 A radio-active material is reduced to $1 / 8$ of its original amount in 3 days. If $8 \times 10^{-3} \mathrm{~kg}$ of the material is left after 5 days. The initial amount of the material is

1 $64 \mathrm{~g}$
2 $40 \mathrm{~g}$
3 $32 \mathrm{~g}$
4 $256 \mathrm{~g}$
NUCLEAR PHYSICS

147559 The half-life of a radioactive substance is $T$. The time taken, for disintegrating $\frac{7}{8}$ th part of its original mass will be:

1 $3 \mathrm{~T}$
2 $8 \mathrm{~T}$
3 $\mathrm{T}$
4 $2 \mathrm{~T}$
NUCLEAR PHYSICS

147560 The half-life of a radioactive nucleus is 5 years, The fraction of the original sample that would decay in $\mathbf{1 5}$ years is:

1 $\frac{1}{8}$
2 $\frac{1}{4}$
3 $\frac{7}{8}$
4 $\frac{3}{4}$