147556
${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$
147556
${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$
147556
${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$
147556
${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$
147556
${ }_{92}^{238} \mathrm{~A} \rightarrow{ }_{90}^{234} \mathrm{~B} \rightarrow{ }_{2}^{4} \mathrm{D}+\mathrm{Q}$
In the given nuclear reaction, the approximate amount of energy released will be :
[Given, mass of ${ }_{92}^{238} \mathrm{~A}=238.05079 \times 931.5$ $\mathrm{MeV} / \mathrm{c}^{2}$,
Mass of ${ }_{90}^{234} \mathrm{~B}=\mathbf{2 3 4 . 0 4 3 6 3} \times 931.5 \mathrm{MeV} / \mathrm{c}^{2}$,
Mass of $\left.{ }_{2}^{4} \mathrm{D}=\mathbf{4 . 0 0 2 6 0} \times \mathbf{9 3 1 . 5} \mathrm{MeV} / \mathrm{c}^{2}\right]$