Composition of Nucleus
NUCLEAR PHYSICS

147498 The ratio of mass defect of the nucleus to its mass number is maximum for

1 $\mathrm{U}^{238}$
2 $\mathrm{N}^{14}$
3 $\mathrm{Si}^{28}$
4 $\mathrm{Fe}^{56}$
NUCLEAR PHYSICS

147502 For the stability of any nucleus

1 binding energy per nucleon will be more
2 binding energy per nucleon will be less
3 number of electrons will be more
4 none of the above
NUCLEAR PHYSICS

147503 $M_{P}$ and $M_{N}$ are masses of proton and neutron respectively, at rest. If they combine to form deuterium nucleus the mass of the nucleus will be

1 Less than $\mathrm{M}_{\mathrm{P}}$
2 Less than $\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{N}}\right)$
3 Less than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
4 Greater than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
NUCLEAR PHYSICS

147504 If $F_{p p}, F_{n n}$ and $F_{p n}$ represent nuclear forces between proton-proton, neutron-neutron and proton-neutron respectively, then the correct relation is

1 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}=\mathrm{F}_{\mathrm{nn}}$
2 $F_{p p}=F_{n n}=F_{p n}$
3 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}>\mathrm{F}_{\mathrm{nn}}$
4 $\mathrm{F}_{\mathrm{pp}} \lt \mathrm{F}_{\mathrm{pn}} \lt \mathrm{F}_{\mathrm{nn}}$
NUCLEAR PHYSICS

147506 The mass number of a nucleus is equal to number of

1 neutrons in nucleus
2 protons in nucleus
3 electrons in nucleus
4 nucleons in nucleus
NUCLEAR PHYSICS

147498 The ratio of mass defect of the nucleus to its mass number is maximum for

1 $\mathrm{U}^{238}$
2 $\mathrm{N}^{14}$
3 $\mathrm{Si}^{28}$
4 $\mathrm{Fe}^{56}$
NUCLEAR PHYSICS

147502 For the stability of any nucleus

1 binding energy per nucleon will be more
2 binding energy per nucleon will be less
3 number of electrons will be more
4 none of the above
NUCLEAR PHYSICS

147503 $M_{P}$ and $M_{N}$ are masses of proton and neutron respectively, at rest. If they combine to form deuterium nucleus the mass of the nucleus will be

1 Less than $\mathrm{M}_{\mathrm{P}}$
2 Less than $\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{N}}\right)$
3 Less than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
4 Greater than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
NUCLEAR PHYSICS

147504 If $F_{p p}, F_{n n}$ and $F_{p n}$ represent nuclear forces between proton-proton, neutron-neutron and proton-neutron respectively, then the correct relation is

1 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}=\mathrm{F}_{\mathrm{nn}}$
2 $F_{p p}=F_{n n}=F_{p n}$
3 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}>\mathrm{F}_{\mathrm{nn}}$
4 $\mathrm{F}_{\mathrm{pp}} \lt \mathrm{F}_{\mathrm{pn}} \lt \mathrm{F}_{\mathrm{nn}}$
NUCLEAR PHYSICS

147506 The mass number of a nucleus is equal to number of

1 neutrons in nucleus
2 protons in nucleus
3 electrons in nucleus
4 nucleons in nucleus
NUCLEAR PHYSICS

147498 The ratio of mass defect of the nucleus to its mass number is maximum for

1 $\mathrm{U}^{238}$
2 $\mathrm{N}^{14}$
3 $\mathrm{Si}^{28}$
4 $\mathrm{Fe}^{56}$
NUCLEAR PHYSICS

147502 For the stability of any nucleus

1 binding energy per nucleon will be more
2 binding energy per nucleon will be less
3 number of electrons will be more
4 none of the above
NUCLEAR PHYSICS

147503 $M_{P}$ and $M_{N}$ are masses of proton and neutron respectively, at rest. If they combine to form deuterium nucleus the mass of the nucleus will be

1 Less than $\mathrm{M}_{\mathrm{P}}$
2 Less than $\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{N}}\right)$
3 Less than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
4 Greater than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
NUCLEAR PHYSICS

147504 If $F_{p p}, F_{n n}$ and $F_{p n}$ represent nuclear forces between proton-proton, neutron-neutron and proton-neutron respectively, then the correct relation is

1 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}=\mathrm{F}_{\mathrm{nn}}$
2 $F_{p p}=F_{n n}=F_{p n}$
3 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}>\mathrm{F}_{\mathrm{nn}}$
4 $\mathrm{F}_{\mathrm{pp}} \lt \mathrm{F}_{\mathrm{pn}} \lt \mathrm{F}_{\mathrm{nn}}$
NUCLEAR PHYSICS

147506 The mass number of a nucleus is equal to number of

1 neutrons in nucleus
2 protons in nucleus
3 electrons in nucleus
4 nucleons in nucleus
NUCLEAR PHYSICS

147498 The ratio of mass defect of the nucleus to its mass number is maximum for

1 $\mathrm{U}^{238}$
2 $\mathrm{N}^{14}$
3 $\mathrm{Si}^{28}$
4 $\mathrm{Fe}^{56}$
NUCLEAR PHYSICS

147502 For the stability of any nucleus

1 binding energy per nucleon will be more
2 binding energy per nucleon will be less
3 number of electrons will be more
4 none of the above
NUCLEAR PHYSICS

147503 $M_{P}$ and $M_{N}$ are masses of proton and neutron respectively, at rest. If they combine to form deuterium nucleus the mass of the nucleus will be

1 Less than $\mathrm{M}_{\mathrm{P}}$
2 Less than $\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{N}}\right)$
3 Less than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
4 Greater than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
NUCLEAR PHYSICS

147504 If $F_{p p}, F_{n n}$ and $F_{p n}$ represent nuclear forces between proton-proton, neutron-neutron and proton-neutron respectively, then the correct relation is

1 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}=\mathrm{F}_{\mathrm{nn}}$
2 $F_{p p}=F_{n n}=F_{p n}$
3 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}>\mathrm{F}_{\mathrm{nn}}$
4 $\mathrm{F}_{\mathrm{pp}} \lt \mathrm{F}_{\mathrm{pn}} \lt \mathrm{F}_{\mathrm{nn}}$
NUCLEAR PHYSICS

147506 The mass number of a nucleus is equal to number of

1 neutrons in nucleus
2 protons in nucleus
3 electrons in nucleus
4 nucleons in nucleus
NUCLEAR PHYSICS

147498 The ratio of mass defect of the nucleus to its mass number is maximum for

1 $\mathrm{U}^{238}$
2 $\mathrm{N}^{14}$
3 $\mathrm{Si}^{28}$
4 $\mathrm{Fe}^{56}$
NUCLEAR PHYSICS

147502 For the stability of any nucleus

1 binding energy per nucleon will be more
2 binding energy per nucleon will be less
3 number of electrons will be more
4 none of the above
NUCLEAR PHYSICS

147503 $M_{P}$ and $M_{N}$ are masses of proton and neutron respectively, at rest. If they combine to form deuterium nucleus the mass of the nucleus will be

1 Less than $\mathrm{M}_{\mathrm{P}}$
2 Less than $\left(\mathrm{M}_{\mathrm{P}}+\mathrm{M}_{\mathrm{N}}\right)$
3 Less than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
4 Greater than $\left(\mathrm{M}_{\mathrm{P}}+2 \mathrm{M}_{\mathrm{N}}\right)$
NUCLEAR PHYSICS

147504 If $F_{p p}, F_{n n}$ and $F_{p n}$ represent nuclear forces between proton-proton, neutron-neutron and proton-neutron respectively, then the correct relation is

1 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}=\mathrm{F}_{\mathrm{nn}}$
2 $F_{p p}=F_{n n}=F_{p n}$
3 $\mathrm{F}_{\mathrm{pp}}>\mathrm{F}_{\mathrm{pn}}>\mathrm{F}_{\mathrm{nn}}$
4 $\mathrm{F}_{\mathrm{pp}} \lt \mathrm{F}_{\mathrm{pn}} \lt \mathrm{F}_{\mathrm{nn}}$
NUCLEAR PHYSICS

147506 The mass number of a nucleus is equal to number of

1 neutrons in nucleus
2 protons in nucleus
3 electrons in nucleus
4 nucleons in nucleus