Composition of Nucleus
NUCLEAR PHYSICS

147442 The mass of proton, neutron and helium nucleus are respectively $1.0073 \mathrm{u}, 1.0087 \mathrm{u}$ and $4.0015 \mathrm{u}$. The binding energy of helium nucleus is:

1 $14.2 \mathrm{MeV}$
2 $7.1 \mathrm{MeV}$
3 $56.8 \mathrm{MeV}$
4 $28.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147446 The ratio of the density of oxygen nucleus $\left({ }_{8}^{16} \mathrm{O}\right)$ and helium nucleus $\left({ }_{2}^{4} \mathrm{He}\right)$ is

1 $4: 1$
2 $1: 1$
3 $8: 1$
4 $2: 1$
NUCLEAR PHYSICS

147447 Binding energy of a Nitrogen nucleus $\left[{ }_{7}^{14} \mathrm{~N}\right]$, given $\mathbf{m}\left[{ }_{7}^{14} \mathbf{N}\right]=\mathbf{1 4 . 0 0 3 0 7} \mathbf{u}$

1 $206.5 \mathrm{MeV}$
2 $78 \mathrm{MeV}$
3 $104.7 \mathrm{MeV}$
4 $85 \mathrm{MeV}$
NUCLEAR PHYSICS

147448 The ratio of the radii of the nuclei ${ }_{29} \mathrm{X}^{64}$ and ${ }_{84} \mathrm{X}^{216}$ is

1 $\frac{2}{3}$
2 $\frac{8}{15}$
3 $\frac{8}{3}$
4 $\frac{7}{8}$
NUCLEAR PHYSICS

147450 A nucleus with mass number 240 breaks into two fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6 $\mathrm{MeV}$ while that of fragments is 8.5 $\mathrm{MeV}$.
The total gain in the binding energy in the process is

1 $0.9 \mathrm{MeV}$
2 $9.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $216 \mathrm{MeV}$
NUCLEAR PHYSICS

147442 The mass of proton, neutron and helium nucleus are respectively $1.0073 \mathrm{u}, 1.0087 \mathrm{u}$ and $4.0015 \mathrm{u}$. The binding energy of helium nucleus is:

1 $14.2 \mathrm{MeV}$
2 $7.1 \mathrm{MeV}$
3 $56.8 \mathrm{MeV}$
4 $28.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147446 The ratio of the density of oxygen nucleus $\left({ }_{8}^{16} \mathrm{O}\right)$ and helium nucleus $\left({ }_{2}^{4} \mathrm{He}\right)$ is

1 $4: 1$
2 $1: 1$
3 $8: 1$
4 $2: 1$
NUCLEAR PHYSICS

147447 Binding energy of a Nitrogen nucleus $\left[{ }_{7}^{14} \mathrm{~N}\right]$, given $\mathbf{m}\left[{ }_{7}^{14} \mathbf{N}\right]=\mathbf{1 4 . 0 0 3 0 7} \mathbf{u}$

1 $206.5 \mathrm{MeV}$
2 $78 \mathrm{MeV}$
3 $104.7 \mathrm{MeV}$
4 $85 \mathrm{MeV}$
NUCLEAR PHYSICS

147448 The ratio of the radii of the nuclei ${ }_{29} \mathrm{X}^{64}$ and ${ }_{84} \mathrm{X}^{216}$ is

1 $\frac{2}{3}$
2 $\frac{8}{15}$
3 $\frac{8}{3}$
4 $\frac{7}{8}$
NUCLEAR PHYSICS

147450 A nucleus with mass number 240 breaks into two fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6 $\mathrm{MeV}$ while that of fragments is 8.5 $\mathrm{MeV}$.
The total gain in the binding energy in the process is

1 $0.9 \mathrm{MeV}$
2 $9.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $216 \mathrm{MeV}$
NUCLEAR PHYSICS

147442 The mass of proton, neutron and helium nucleus are respectively $1.0073 \mathrm{u}, 1.0087 \mathrm{u}$ and $4.0015 \mathrm{u}$. The binding energy of helium nucleus is:

1 $14.2 \mathrm{MeV}$
2 $7.1 \mathrm{MeV}$
3 $56.8 \mathrm{MeV}$
4 $28.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147446 The ratio of the density of oxygen nucleus $\left({ }_{8}^{16} \mathrm{O}\right)$ and helium nucleus $\left({ }_{2}^{4} \mathrm{He}\right)$ is

1 $4: 1$
2 $1: 1$
3 $8: 1$
4 $2: 1$
NUCLEAR PHYSICS

147447 Binding energy of a Nitrogen nucleus $\left[{ }_{7}^{14} \mathrm{~N}\right]$, given $\mathbf{m}\left[{ }_{7}^{14} \mathbf{N}\right]=\mathbf{1 4 . 0 0 3 0 7} \mathbf{u}$

1 $206.5 \mathrm{MeV}$
2 $78 \mathrm{MeV}$
3 $104.7 \mathrm{MeV}$
4 $85 \mathrm{MeV}$
NUCLEAR PHYSICS

147448 The ratio of the radii of the nuclei ${ }_{29} \mathrm{X}^{64}$ and ${ }_{84} \mathrm{X}^{216}$ is

1 $\frac{2}{3}$
2 $\frac{8}{15}$
3 $\frac{8}{3}$
4 $\frac{7}{8}$
NUCLEAR PHYSICS

147450 A nucleus with mass number 240 breaks into two fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6 $\mathrm{MeV}$ while that of fragments is 8.5 $\mathrm{MeV}$.
The total gain in the binding energy in the process is

1 $0.9 \mathrm{MeV}$
2 $9.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $216 \mathrm{MeV}$
NUCLEAR PHYSICS

147442 The mass of proton, neutron and helium nucleus are respectively $1.0073 \mathrm{u}, 1.0087 \mathrm{u}$ and $4.0015 \mathrm{u}$. The binding energy of helium nucleus is:

1 $14.2 \mathrm{MeV}$
2 $7.1 \mathrm{MeV}$
3 $56.8 \mathrm{MeV}$
4 $28.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147446 The ratio of the density of oxygen nucleus $\left({ }_{8}^{16} \mathrm{O}\right)$ and helium nucleus $\left({ }_{2}^{4} \mathrm{He}\right)$ is

1 $4: 1$
2 $1: 1$
3 $8: 1$
4 $2: 1$
NUCLEAR PHYSICS

147447 Binding energy of a Nitrogen nucleus $\left[{ }_{7}^{14} \mathrm{~N}\right]$, given $\mathbf{m}\left[{ }_{7}^{14} \mathbf{N}\right]=\mathbf{1 4 . 0 0 3 0 7} \mathbf{u}$

1 $206.5 \mathrm{MeV}$
2 $78 \mathrm{MeV}$
3 $104.7 \mathrm{MeV}$
4 $85 \mathrm{MeV}$
NUCLEAR PHYSICS

147448 The ratio of the radii of the nuclei ${ }_{29} \mathrm{X}^{64}$ and ${ }_{84} \mathrm{X}^{216}$ is

1 $\frac{2}{3}$
2 $\frac{8}{15}$
3 $\frac{8}{3}$
4 $\frac{7}{8}$
NUCLEAR PHYSICS

147450 A nucleus with mass number 240 breaks into two fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6 $\mathrm{MeV}$ while that of fragments is 8.5 $\mathrm{MeV}$.
The total gain in the binding energy in the process is

1 $0.9 \mathrm{MeV}$
2 $9.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $216 \mathrm{MeV}$
NUCLEAR PHYSICS

147442 The mass of proton, neutron and helium nucleus are respectively $1.0073 \mathrm{u}, 1.0087 \mathrm{u}$ and $4.0015 \mathrm{u}$. The binding energy of helium nucleus is:

1 $14.2 \mathrm{MeV}$
2 $7.1 \mathrm{MeV}$
3 $56.8 \mathrm{MeV}$
4 $28.4 \mathrm{MeV}$
NUCLEAR PHYSICS

147446 The ratio of the density of oxygen nucleus $\left({ }_{8}^{16} \mathrm{O}\right)$ and helium nucleus $\left({ }_{2}^{4} \mathrm{He}\right)$ is

1 $4: 1$
2 $1: 1$
3 $8: 1$
4 $2: 1$
NUCLEAR PHYSICS

147447 Binding energy of a Nitrogen nucleus $\left[{ }_{7}^{14} \mathrm{~N}\right]$, given $\mathbf{m}\left[{ }_{7}^{14} \mathbf{N}\right]=\mathbf{1 4 . 0 0 3 0 7} \mathbf{u}$

1 $206.5 \mathrm{MeV}$
2 $78 \mathrm{MeV}$
3 $104.7 \mathrm{MeV}$
4 $85 \mathrm{MeV}$
NUCLEAR PHYSICS

147448 The ratio of the radii of the nuclei ${ }_{29} \mathrm{X}^{64}$ and ${ }_{84} \mathrm{X}^{216}$ is

1 $\frac{2}{3}$
2 $\frac{8}{15}$
3 $\frac{8}{3}$
4 $\frac{7}{8}$
NUCLEAR PHYSICS

147450 A nucleus with mass number 240 breaks into two fragments each of mass number 120, the binding energy per nucleon of unfragmented nuclei is 7.6 $\mathrm{MeV}$ while that of fragments is 8.5 $\mathrm{MeV}$.
The total gain in the binding energy in the process is

1 $0.9 \mathrm{MeV}$
2 $9.4 \mathrm{MeV}$
3 $8.4 \mathrm{MeV}$
4 $216 \mathrm{MeV}$