Nucleus (Atomic Number (Z), Atomic Mass (A), Isotopes, Isobars, Isostones)
NUCLEAR PHYSICS

147370 Ratio of charge on positron to mass of positron is approximately

1 $+2 \times 10^{11}$
2 $+5 \times 10^{12}$
3 $-2 \times 10^{11}$
4 $-5 \times 10^{11}$
NUCLEAR PHYSICS

147371 If the radii of ${ }_{30}^{64} \mathrm{Zn}$ and ${ }_{13}^{27} \mathrm{Al}$ nuclei are $\mathrm{R}_{1}$ and $R_{2}$ respectively then $\frac{R_{1}}{R_{2}}=$

1 $\frac{64}{27}$
2 $\frac{4}{3}$
3 $\frac{3}{4}$
4 $\frac{27}{64}$
NUCLEAR PHYSICS

147375 A nucleus disintegrates into two nuclear parts which have their velocities in the ratio $2: 1$. The ratio of their nuclear sizes will be

1 $2^{\frac{1}{3}}: 1$
2 $1: 3^{\frac{1}{2}}$
3 $1: 2^{\frac{1}{3}}$
4 $3^{\frac{1}{3}}: 1$
NUCLEAR PHYSICS

147378 Order of magnitude of density of uranium nucleus is $\left(\mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}\right)$

1 $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$
NUCLEAR PHYSICS

147370 Ratio of charge on positron to mass of positron is approximately

1 $+2 \times 10^{11}$
2 $+5 \times 10^{12}$
3 $-2 \times 10^{11}$
4 $-5 \times 10^{11}$
NUCLEAR PHYSICS

147371 If the radii of ${ }_{30}^{64} \mathrm{Zn}$ and ${ }_{13}^{27} \mathrm{Al}$ nuclei are $\mathrm{R}_{1}$ and $R_{2}$ respectively then $\frac{R_{1}}{R_{2}}=$

1 $\frac{64}{27}$
2 $\frac{4}{3}$
3 $\frac{3}{4}$
4 $\frac{27}{64}$
NUCLEAR PHYSICS

147375 A nucleus disintegrates into two nuclear parts which have their velocities in the ratio $2: 1$. The ratio of their nuclear sizes will be

1 $2^{\frac{1}{3}}: 1$
2 $1: 3^{\frac{1}{2}}$
3 $1: 2^{\frac{1}{3}}$
4 $3^{\frac{1}{3}}: 1$
NUCLEAR PHYSICS

147378 Order of magnitude of density of uranium nucleus is $\left(\mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}\right)$

1 $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$
NUCLEAR PHYSICS

147370 Ratio of charge on positron to mass of positron is approximately

1 $+2 \times 10^{11}$
2 $+5 \times 10^{12}$
3 $-2 \times 10^{11}$
4 $-5 \times 10^{11}$
NUCLEAR PHYSICS

147371 If the radii of ${ }_{30}^{64} \mathrm{Zn}$ and ${ }_{13}^{27} \mathrm{Al}$ nuclei are $\mathrm{R}_{1}$ and $R_{2}$ respectively then $\frac{R_{1}}{R_{2}}=$

1 $\frac{64}{27}$
2 $\frac{4}{3}$
3 $\frac{3}{4}$
4 $\frac{27}{64}$
NUCLEAR PHYSICS

147375 A nucleus disintegrates into two nuclear parts which have their velocities in the ratio $2: 1$. The ratio of their nuclear sizes will be

1 $2^{\frac{1}{3}}: 1$
2 $1: 3^{\frac{1}{2}}$
3 $1: 2^{\frac{1}{3}}$
4 $3^{\frac{1}{3}}: 1$
NUCLEAR PHYSICS

147378 Order of magnitude of density of uranium nucleus is $\left(\mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}\right)$

1 $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$
NUCLEAR PHYSICS

147370 Ratio of charge on positron to mass of positron is approximately

1 $+2 \times 10^{11}$
2 $+5 \times 10^{12}$
3 $-2 \times 10^{11}$
4 $-5 \times 10^{11}$
NUCLEAR PHYSICS

147371 If the radii of ${ }_{30}^{64} \mathrm{Zn}$ and ${ }_{13}^{27} \mathrm{Al}$ nuclei are $\mathrm{R}_{1}$ and $R_{2}$ respectively then $\frac{R_{1}}{R_{2}}=$

1 $\frac{64}{27}$
2 $\frac{4}{3}$
3 $\frac{3}{4}$
4 $\frac{27}{64}$
NUCLEAR PHYSICS

147375 A nucleus disintegrates into two nuclear parts which have their velocities in the ratio $2: 1$. The ratio of their nuclear sizes will be

1 $2^{\frac{1}{3}}: 1$
2 $1: 3^{\frac{1}{2}}$
3 $1: 2^{\frac{1}{3}}$
4 $3^{\frac{1}{3}}: 1$
NUCLEAR PHYSICS

147378 Order of magnitude of density of uranium nucleus is $\left(\mathrm{m}_{\mathrm{p}}=1.6 \times 10^{-27} \mathrm{~kg}\right)$

1 $10^{20} \mathrm{~kg} / \mathrm{m}^{3}$
2 $10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
3 $10^{14} \mathrm{~kg} / \mathrm{m}^{3}$
4 $10^{11} \mathrm{~kg} / \mathrm{m}^{3}$