Nucleus (Atomic Number (Z), Atomic Mass (A), Isotopes, Isobars, Isostones)
NUCLEAR PHYSICS

147385 The density of nucleus in $\mathrm{kg} / \mathrm{m}^{3}$ is of the order of
#[Qdiff: Hard, QCat: Numerical Based, examname: UPSEE - 2013]
, $\rho=\frac{\mathrm{A} \times 1 \mathrm{AMU}}{\frac{4}{3} \pi \mathrm{R}^{3}}=\frac{\mathrm{A} \times 1.67 \times 10^{-27}}{\frac{4}{3} \pi\left(1.2 \times 10^{-15} \times \mathrm{A}^{1 / 3}\right)^{3}}$
, $\rho=2.3 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
, Order of magnitude of density $\approx 10^{17}$
, 43. The radius of $\mathrm{Ge}$ nuclide is measured to be twice the radius of ${ }_{4} \mathrm{Be}^{9}$. The number of nucleon in $\mathrm{Ge}$ are
, (a) 72
, (b) 73
, (c) 74
, (d) 75
]#

1 $10^{4}$
2 $10^{9}$
3 $10^{13}$
4 $10^{17}$
NUCLEAR PHYSICS

147387 If the binding energy per nucleon of deuteron is 1.115 MeV, its mass defect in atomic mass unit is
#[Qdiff: Hard, QCat: Numerical Based, examname: 48. The set which represents the isotope, [Kerala CEE - 2010]
, $=0.0024 \mathrm{AMU}$.
, isobar and isotone respectively is
, (a) $\left({ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}\right),\left({ }_{79} \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$ and
, $\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{2}\right)$
, (b) $\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{1}\right),\left({ }_{79} \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$ and
, $\left({ }_{1} \mathrm{H}^{1},{ }_{1} \mathrm{H}^{3}\right)$
, (c) $\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{2}\right),\left({ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}\right)$ and
, $\left({ }_{79} \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$
, (d) $\left({ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}\right),\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{3}\right)$ and
, (e) $\left({ }_{1} \mathrm{H}^{1},{ }_{1} \mathrm{H}^{3}\right),\left({ }_{79} \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$ and
, $\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{3}\right)$
]#

1 0.0048
2 0.0024
3 0.0012
4 0.0006
5 2.230
NUCLEAR PHYSICS

147385 The density of nucleus in $\mathrm{kg} / \mathrm{m}^{3}$ is of the order of
#[Qdiff: Hard, QCat: Numerical Based, examname: UPSEE - 2013]
, $\rho=\frac{\mathrm{A} \times 1 \mathrm{AMU}}{\frac{4}{3} \pi \mathrm{R}^{3}}=\frac{\mathrm{A} \times 1.67 \times 10^{-27}}{\frac{4}{3} \pi\left(1.2 \times 10^{-15} \times \mathrm{A}^{1 / 3}\right)^{3}}$
, $\rho=2.3 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$
, Order of magnitude of density $\approx 10^{17}$
, 43. The radius of $\mathrm{Ge}$ nuclide is measured to be twice the radius of ${ }_{4} \mathrm{Be}^{9}$. The number of nucleon in $\mathrm{Ge}$ are
, (a) 72
, (b) 73
, (c) 74
, (d) 75
]#

1 $10^{4}$
2 $10^{9}$
3 $10^{13}$
4 $10^{17}$
NUCLEAR PHYSICS

147387 If the binding energy per nucleon of deuteron is 1.115 MeV, its mass defect in atomic mass unit is
#[Qdiff: Hard, QCat: Numerical Based, examname: 48. The set which represents the isotope, [Kerala CEE - 2010]
, $=0.0024 \mathrm{AMU}$.
, isobar and isotone respectively is
, (a) $\left({ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}\right),\left({ }_{79} \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$ and
, $\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{2}\right)$
, (b) $\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{1}\right),\left({ }_{79} \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$ and
, $\left({ }_{1} \mathrm{H}^{1},{ }_{1} \mathrm{H}^{3}\right)$
, (c) $\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{2}\right),\left({ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}\right)$ and
, $\left({ }_{79} \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$
, (d) $\left({ }_{1} \mathrm{H}^{2},{ }_{1} \mathrm{H}^{3}\right),\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{3}\right)$ and
, (e) $\left({ }_{1} \mathrm{H}^{1},{ }_{1} \mathrm{H}^{3}\right),\left({ }_{79} \mathrm{Au}^{197},{ }_{80} \mathrm{Hg}^{198}\right)$ and
, $\left({ }_{2} \mathrm{He}^{3},{ }_{1} \mathrm{H}^{3}\right)$
]#

1 0.0048
2 0.0024
3 0.0012
4 0.0006
5 2.230