142653
X-ray of wavelength \(\lambda=2 \AA\) is emitted from the metal target. The potential difference applied across the cathode and the metal target is
1 \(5525 \mathrm{~V}\)
2 \(320 \mathrm{~V}\)
3 \(6200 \mathrm{~V}\)
4 \(3250 \mathrm{~V}\)
Explanation:
C Given that, Wavelength of X-ray \((\lambda)=2 \AA=2 \times 10^{-10} \mathrm{~m}\) Planck's constant \((\mathrm{h})=6.62 \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\) Speed of light (c) \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\) We know that, Energy (E) \(=\frac{\mathrm{hc}}{\lambda}\) Potential difference \(=\frac{h \mathrm{c}}{\lambda \mathrm{e}}\) \(=\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{2 \times 10^{-10} \times 1.6 \times 10^{-19}}\) \(=6.206 \times 10^3\) \(=6206\) \(=6200 \mathrm{~V}\)
Manipal UGET-2010
Dual nature of radiation and Matter
142589
Which of the following wavelengths falls in Xray region?
1 \(10000 \mathrm{~A}\)
2 \(1000 \mathrm{~A}\)
3 \(1 \mathrm{~A}\)
4 \(10^{-2} \AA\)
Explanation:
C The spectrum is a continuous range of electromagnetic radiation waves. It ranges from the longest radio wave to the shortest gamma rays. X-rays wavelengths are fall in the region of \(1 \AA\) to \(100 \mathrm{~A}\).
AP EAMCET-07.07.2022
Dual nature of radiation and Matter
142592
If \(\mathrm{V}\) be the aceelerating voltage of the tube, the maximum frequency of continuous x-rays produced depends on \(V\) as
1 \(V^2\)
2 \(\mathrm{V}\)
3 \(\mathrm{V}^{1 / 2}\)
4 \(\mathrm{V}^{-1}\)
Explanation:
B We know, \(\mathrm{E}=\mathrm{eV}\) And \(\mathrm{eV}=h v_{\max }\) Where, \(v_{\max }=\) frequency \(v_{\max }=\frac{\mathrm{eV}}{\mathrm{h}}\) Hence, \(v_{\max } \propto \mathrm{V}\)
UPSEE 2020
Dual nature of radiation and Matter
142596
The potential difference applied to an \(X\)-ray tube is \(5 \mathrm{kV}\) and the current through it is \(\mathbf{3 . 2}\) \(\mathrm{mA}\). Then the number of electrons striking the target per second is
1 \(5 \times 10^6\)
2 \(2 \times 10^{16}\)
3 \(1 \times 10^{17}\)
4 \(4 \times 10^{18}\)
Explanation:
B Given, Current (I) \(=3.2 \mathrm{~mA}=3.2 \times 10^{-3} \mathrm{~A}\) Let, \(\mathrm{n}\) is the number of electron passing per second We know, Current \((I)=\frac{\text { Charge }(q)}{\text { time }(t)}=\frac{n e}{t} \quad(\therefore q=n e)\) Then, \(\mathrm{n}=\frac{\mathrm{It}}{\mathrm{e}}\) \(\mathrm{n}=\frac{3.2 \times 10^{-3} \times 1}{1.6 \times 10^{-19}}\) \(\mathrm{n}=2 \times 10^{16}\)
142653
X-ray of wavelength \(\lambda=2 \AA\) is emitted from the metal target. The potential difference applied across the cathode and the metal target is
1 \(5525 \mathrm{~V}\)
2 \(320 \mathrm{~V}\)
3 \(6200 \mathrm{~V}\)
4 \(3250 \mathrm{~V}\)
Explanation:
C Given that, Wavelength of X-ray \((\lambda)=2 \AA=2 \times 10^{-10} \mathrm{~m}\) Planck's constant \((\mathrm{h})=6.62 \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\) Speed of light (c) \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\) We know that, Energy (E) \(=\frac{\mathrm{hc}}{\lambda}\) Potential difference \(=\frac{h \mathrm{c}}{\lambda \mathrm{e}}\) \(=\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{2 \times 10^{-10} \times 1.6 \times 10^{-19}}\) \(=6.206 \times 10^3\) \(=6206\) \(=6200 \mathrm{~V}\)
Manipal UGET-2010
Dual nature of radiation and Matter
142589
Which of the following wavelengths falls in Xray region?
1 \(10000 \mathrm{~A}\)
2 \(1000 \mathrm{~A}\)
3 \(1 \mathrm{~A}\)
4 \(10^{-2} \AA\)
Explanation:
C The spectrum is a continuous range of electromagnetic radiation waves. It ranges from the longest radio wave to the shortest gamma rays. X-rays wavelengths are fall in the region of \(1 \AA\) to \(100 \mathrm{~A}\).
AP EAMCET-07.07.2022
Dual nature of radiation and Matter
142592
If \(\mathrm{V}\) be the aceelerating voltage of the tube, the maximum frequency of continuous x-rays produced depends on \(V\) as
1 \(V^2\)
2 \(\mathrm{V}\)
3 \(\mathrm{V}^{1 / 2}\)
4 \(\mathrm{V}^{-1}\)
Explanation:
B We know, \(\mathrm{E}=\mathrm{eV}\) And \(\mathrm{eV}=h v_{\max }\) Where, \(v_{\max }=\) frequency \(v_{\max }=\frac{\mathrm{eV}}{\mathrm{h}}\) Hence, \(v_{\max } \propto \mathrm{V}\)
UPSEE 2020
Dual nature of radiation and Matter
142596
The potential difference applied to an \(X\)-ray tube is \(5 \mathrm{kV}\) and the current through it is \(\mathbf{3 . 2}\) \(\mathrm{mA}\). Then the number of electrons striking the target per second is
1 \(5 \times 10^6\)
2 \(2 \times 10^{16}\)
3 \(1 \times 10^{17}\)
4 \(4 \times 10^{18}\)
Explanation:
B Given, Current (I) \(=3.2 \mathrm{~mA}=3.2 \times 10^{-3} \mathrm{~A}\) Let, \(\mathrm{n}\) is the number of electron passing per second We know, Current \((I)=\frac{\text { Charge }(q)}{\text { time }(t)}=\frac{n e}{t} \quad(\therefore q=n e)\) Then, \(\mathrm{n}=\frac{\mathrm{It}}{\mathrm{e}}\) \(\mathrm{n}=\frac{3.2 \times 10^{-3} \times 1}{1.6 \times 10^{-19}}\) \(\mathrm{n}=2 \times 10^{16}\)
142653
X-ray of wavelength \(\lambda=2 \AA\) is emitted from the metal target. The potential difference applied across the cathode and the metal target is
1 \(5525 \mathrm{~V}\)
2 \(320 \mathrm{~V}\)
3 \(6200 \mathrm{~V}\)
4 \(3250 \mathrm{~V}\)
Explanation:
C Given that, Wavelength of X-ray \((\lambda)=2 \AA=2 \times 10^{-10} \mathrm{~m}\) Planck's constant \((\mathrm{h})=6.62 \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\) Speed of light (c) \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\) We know that, Energy (E) \(=\frac{\mathrm{hc}}{\lambda}\) Potential difference \(=\frac{h \mathrm{c}}{\lambda \mathrm{e}}\) \(=\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{2 \times 10^{-10} \times 1.6 \times 10^{-19}}\) \(=6.206 \times 10^3\) \(=6206\) \(=6200 \mathrm{~V}\)
Manipal UGET-2010
Dual nature of radiation and Matter
142589
Which of the following wavelengths falls in Xray region?
1 \(10000 \mathrm{~A}\)
2 \(1000 \mathrm{~A}\)
3 \(1 \mathrm{~A}\)
4 \(10^{-2} \AA\)
Explanation:
C The spectrum is a continuous range of electromagnetic radiation waves. It ranges from the longest radio wave to the shortest gamma rays. X-rays wavelengths are fall in the region of \(1 \AA\) to \(100 \mathrm{~A}\).
AP EAMCET-07.07.2022
Dual nature of radiation and Matter
142592
If \(\mathrm{V}\) be the aceelerating voltage of the tube, the maximum frequency of continuous x-rays produced depends on \(V\) as
1 \(V^2\)
2 \(\mathrm{V}\)
3 \(\mathrm{V}^{1 / 2}\)
4 \(\mathrm{V}^{-1}\)
Explanation:
B We know, \(\mathrm{E}=\mathrm{eV}\) And \(\mathrm{eV}=h v_{\max }\) Where, \(v_{\max }=\) frequency \(v_{\max }=\frac{\mathrm{eV}}{\mathrm{h}}\) Hence, \(v_{\max } \propto \mathrm{V}\)
UPSEE 2020
Dual nature of radiation and Matter
142596
The potential difference applied to an \(X\)-ray tube is \(5 \mathrm{kV}\) and the current through it is \(\mathbf{3 . 2}\) \(\mathrm{mA}\). Then the number of electrons striking the target per second is
1 \(5 \times 10^6\)
2 \(2 \times 10^{16}\)
3 \(1 \times 10^{17}\)
4 \(4 \times 10^{18}\)
Explanation:
B Given, Current (I) \(=3.2 \mathrm{~mA}=3.2 \times 10^{-3} \mathrm{~A}\) Let, \(\mathrm{n}\) is the number of electron passing per second We know, Current \((I)=\frac{\text { Charge }(q)}{\text { time }(t)}=\frac{n e}{t} \quad(\therefore q=n e)\) Then, \(\mathrm{n}=\frac{\mathrm{It}}{\mathrm{e}}\) \(\mathrm{n}=\frac{3.2 \times 10^{-3} \times 1}{1.6 \times 10^{-19}}\) \(\mathrm{n}=2 \times 10^{16}\)
NEET Test Series from KOTA - 10 Papers In MS WORD
WhatsApp Here
Dual nature of radiation and Matter
142653
X-ray of wavelength \(\lambda=2 \AA\) is emitted from the metal target. The potential difference applied across the cathode and the metal target is
1 \(5525 \mathrm{~V}\)
2 \(320 \mathrm{~V}\)
3 \(6200 \mathrm{~V}\)
4 \(3250 \mathrm{~V}\)
Explanation:
C Given that, Wavelength of X-ray \((\lambda)=2 \AA=2 \times 10^{-10} \mathrm{~m}\) Planck's constant \((\mathrm{h})=6.62 \times 10^{-34} \mathrm{~m}^2 \mathrm{~kg} / \mathrm{s}\) Speed of light (c) \(=3 \times 10^8 \mathrm{~m} / \mathrm{s}\) We know that, Energy (E) \(=\frac{\mathrm{hc}}{\lambda}\) Potential difference \(=\frac{h \mathrm{c}}{\lambda \mathrm{e}}\) \(=\frac{6.62 \times 10^{-34} \times 3 \times 10^8}{2 \times 10^{-10} \times 1.6 \times 10^{-19}}\) \(=6.206 \times 10^3\) \(=6206\) \(=6200 \mathrm{~V}\)
Manipal UGET-2010
Dual nature of radiation and Matter
142589
Which of the following wavelengths falls in Xray region?
1 \(10000 \mathrm{~A}\)
2 \(1000 \mathrm{~A}\)
3 \(1 \mathrm{~A}\)
4 \(10^{-2} \AA\)
Explanation:
C The spectrum is a continuous range of electromagnetic radiation waves. It ranges from the longest radio wave to the shortest gamma rays. X-rays wavelengths are fall in the region of \(1 \AA\) to \(100 \mathrm{~A}\).
AP EAMCET-07.07.2022
Dual nature of radiation and Matter
142592
If \(\mathrm{V}\) be the aceelerating voltage of the tube, the maximum frequency of continuous x-rays produced depends on \(V\) as
1 \(V^2\)
2 \(\mathrm{V}\)
3 \(\mathrm{V}^{1 / 2}\)
4 \(\mathrm{V}^{-1}\)
Explanation:
B We know, \(\mathrm{E}=\mathrm{eV}\) And \(\mathrm{eV}=h v_{\max }\) Where, \(v_{\max }=\) frequency \(v_{\max }=\frac{\mathrm{eV}}{\mathrm{h}}\) Hence, \(v_{\max } \propto \mathrm{V}\)
UPSEE 2020
Dual nature of radiation and Matter
142596
The potential difference applied to an \(X\)-ray tube is \(5 \mathrm{kV}\) and the current through it is \(\mathbf{3 . 2}\) \(\mathrm{mA}\). Then the number of electrons striking the target per second is
1 \(5 \times 10^6\)
2 \(2 \times 10^{16}\)
3 \(1 \times 10^{17}\)
4 \(4 \times 10^{18}\)
Explanation:
B Given, Current (I) \(=3.2 \mathrm{~mA}=3.2 \times 10^{-3} \mathrm{~A}\) Let, \(\mathrm{n}\) is the number of electron passing per second We know, Current \((I)=\frac{\text { Charge }(q)}{\text { time }(t)}=\frac{n e}{t} \quad(\therefore q=n e)\) Then, \(\mathrm{n}=\frac{\mathrm{It}}{\mathrm{e}}\) \(\mathrm{n}=\frac{3.2 \times 10^{-3} \times 1}{1.6 \times 10^{-19}}\) \(\mathrm{n}=2 \times 10^{16}\)