Wave Nature Of Light Of Matter (de-Broglie)
Dual nature of radiation and Matter

142457 The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature $T$ (Kelvin) and mass $m_{\text {, is }}$

1 $\frac{\mathrm{h}}{\sqrt{\mathrm{mkT}}}$
2 $\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
3 $\frac{2 \mathrm{~h}}{\sqrt{3 \mathrm{mkT}}}$
4 $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
Dual nature of radiation and Matter

142458 The de-Broglie wavelength of a tennis ball of mass $60 \mathrm{~g}$ moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ is Given: Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

1 $10^{-16} \mathrm{~m}$
2 $10^{-25} \mathrm{~m}$
3 $10^{-31} \mathrm{~m}$
4 $10^{-33} \mathrm{~m}$
Dual nature of radiation and Matter

142459 If the momentum of an electron changes by ' $P$ ' then the de-Broglie wavelength associated with it changes by $5 \%$. Then the initial momentum of the electron is

1 $\frac{20}{\mathrm{P}}$
2 $20 \mathrm{P}$
3 $\frac{P}{20}$
4 $30 \mathrm{P}$
Dual nature of radiation and Matter

142460 The ratio of de-Broglie wavelength of molecules of hydrogen and helium which are at temperatures $27^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$ respectively is

1 $2: 3$
2 $2 \sqrt{2}: \sqrt{3}$
3 $\sqrt{3}: 2 \sqrt{2}$
4 $\sqrt{2}: \sqrt{3}$
Dual nature of radiation and Matter

142461 The wavelength $\lambda$ of a photon and the deBroglie wavelength of an electron have the same value. Find the ratio of energy of photon of the kinetic energy of electron in terms of mass $m$, speed of light $c$ and Planck constant.

1 $\frac{\lambda \mathrm{mc}}{\mathrm{h}}$
2 $\frac{\mathrm{hmc}}{\lambda}$
3 $\frac{2 \mathrm{hmc}}{\lambda}$
4 $\frac{2 \lambda \mathrm{mc}}{\mathrm{h}}$
Dual nature of radiation and Matter

142457 The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature $T$ (Kelvin) and mass $m_{\text {, is }}$

1 $\frac{\mathrm{h}}{\sqrt{\mathrm{mkT}}}$
2 $\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
3 $\frac{2 \mathrm{~h}}{\sqrt{3 \mathrm{mkT}}}$
4 $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
Dual nature of radiation and Matter

142458 The de-Broglie wavelength of a tennis ball of mass $60 \mathrm{~g}$ moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ is Given: Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

1 $10^{-16} \mathrm{~m}$
2 $10^{-25} \mathrm{~m}$
3 $10^{-31} \mathrm{~m}$
4 $10^{-33} \mathrm{~m}$
Dual nature of radiation and Matter

142459 If the momentum of an electron changes by ' $P$ ' then the de-Broglie wavelength associated with it changes by $5 \%$. Then the initial momentum of the electron is

1 $\frac{20}{\mathrm{P}}$
2 $20 \mathrm{P}$
3 $\frac{P}{20}$
4 $30 \mathrm{P}$
Dual nature of radiation and Matter

142460 The ratio of de-Broglie wavelength of molecules of hydrogen and helium which are at temperatures $27^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$ respectively is

1 $2: 3$
2 $2 \sqrt{2}: \sqrt{3}$
3 $\sqrt{3}: 2 \sqrt{2}$
4 $\sqrt{2}: \sqrt{3}$
Dual nature of radiation and Matter

142461 The wavelength $\lambda$ of a photon and the deBroglie wavelength of an electron have the same value. Find the ratio of energy of photon of the kinetic energy of electron in terms of mass $m$, speed of light $c$ and Planck constant.

1 $\frac{\lambda \mathrm{mc}}{\mathrm{h}}$
2 $\frac{\mathrm{hmc}}{\lambda}$
3 $\frac{2 \mathrm{hmc}}{\lambda}$
4 $\frac{2 \lambda \mathrm{mc}}{\mathrm{h}}$
Dual nature of radiation and Matter

142457 The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature $T$ (Kelvin) and mass $m_{\text {, is }}$

1 $\frac{\mathrm{h}}{\sqrt{\mathrm{mkT}}}$
2 $\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
3 $\frac{2 \mathrm{~h}}{\sqrt{3 \mathrm{mkT}}}$
4 $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
Dual nature of radiation and Matter

142458 The de-Broglie wavelength of a tennis ball of mass $60 \mathrm{~g}$ moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ is Given: Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

1 $10^{-16} \mathrm{~m}$
2 $10^{-25} \mathrm{~m}$
3 $10^{-31} \mathrm{~m}$
4 $10^{-33} \mathrm{~m}$
Dual nature of radiation and Matter

142459 If the momentum of an electron changes by ' $P$ ' then the de-Broglie wavelength associated with it changes by $5 \%$. Then the initial momentum of the electron is

1 $\frac{20}{\mathrm{P}}$
2 $20 \mathrm{P}$
3 $\frac{P}{20}$
4 $30 \mathrm{P}$
Dual nature of radiation and Matter

142460 The ratio of de-Broglie wavelength of molecules of hydrogen and helium which are at temperatures $27^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$ respectively is

1 $2: 3$
2 $2 \sqrt{2}: \sqrt{3}$
3 $\sqrt{3}: 2 \sqrt{2}$
4 $\sqrt{2}: \sqrt{3}$
Dual nature of radiation and Matter

142461 The wavelength $\lambda$ of a photon and the deBroglie wavelength of an electron have the same value. Find the ratio of energy of photon of the kinetic energy of electron in terms of mass $m$, speed of light $c$ and Planck constant.

1 $\frac{\lambda \mathrm{mc}}{\mathrm{h}}$
2 $\frac{\mathrm{hmc}}{\lambda}$
3 $\frac{2 \mathrm{hmc}}{\lambda}$
4 $\frac{2 \lambda \mathrm{mc}}{\mathrm{h}}$
Dual nature of radiation and Matter

142457 The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature $T$ (Kelvin) and mass $m_{\text {, is }}$

1 $\frac{\mathrm{h}}{\sqrt{\mathrm{mkT}}}$
2 $\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
3 $\frac{2 \mathrm{~h}}{\sqrt{3 \mathrm{mkT}}}$
4 $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
Dual nature of radiation and Matter

142458 The de-Broglie wavelength of a tennis ball of mass $60 \mathrm{~g}$ moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ is Given: Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

1 $10^{-16} \mathrm{~m}$
2 $10^{-25} \mathrm{~m}$
3 $10^{-31} \mathrm{~m}$
4 $10^{-33} \mathrm{~m}$
Dual nature of radiation and Matter

142459 If the momentum of an electron changes by ' $P$ ' then the de-Broglie wavelength associated with it changes by $5 \%$. Then the initial momentum of the electron is

1 $\frac{20}{\mathrm{P}}$
2 $20 \mathrm{P}$
3 $\frac{P}{20}$
4 $30 \mathrm{P}$
Dual nature of radiation and Matter

142460 The ratio of de-Broglie wavelength of molecules of hydrogen and helium which are at temperatures $27^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$ respectively is

1 $2: 3$
2 $2 \sqrt{2}: \sqrt{3}$
3 $\sqrt{3}: 2 \sqrt{2}$
4 $\sqrt{2}: \sqrt{3}$
Dual nature of radiation and Matter

142461 The wavelength $\lambda$ of a photon and the deBroglie wavelength of an electron have the same value. Find the ratio of energy of photon of the kinetic energy of electron in terms of mass $m$, speed of light $c$ and Planck constant.

1 $\frac{\lambda \mathrm{mc}}{\mathrm{h}}$
2 $\frac{\mathrm{hmc}}{\lambda}$
3 $\frac{2 \mathrm{hmc}}{\lambda}$
4 $\frac{2 \lambda \mathrm{mc}}{\mathrm{h}}$
Dual nature of radiation and Matter

142457 The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature $T$ (Kelvin) and mass $m_{\text {, is }}$

1 $\frac{\mathrm{h}}{\sqrt{\mathrm{mkT}}}$
2 $\frac{\mathrm{h}}{\sqrt{3 \mathrm{mkT}}}$
3 $\frac{2 \mathrm{~h}}{\sqrt{3 \mathrm{mkT}}}$
4 $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
Dual nature of radiation and Matter

142458 The de-Broglie wavelength of a tennis ball of mass $60 \mathrm{~g}$ moving with a velocity of $10 \mathrm{~m} / \mathrm{s}$ is Given: Planck's constant $=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}$

1 $10^{-16} \mathrm{~m}$
2 $10^{-25} \mathrm{~m}$
3 $10^{-31} \mathrm{~m}$
4 $10^{-33} \mathrm{~m}$
Dual nature of radiation and Matter

142459 If the momentum of an electron changes by ' $P$ ' then the de-Broglie wavelength associated with it changes by $5 \%$. Then the initial momentum of the electron is

1 $\frac{20}{\mathrm{P}}$
2 $20 \mathrm{P}$
3 $\frac{P}{20}$
4 $30 \mathrm{P}$
Dual nature of radiation and Matter

142460 The ratio of de-Broglie wavelength of molecules of hydrogen and helium which are at temperatures $27^{\circ} \mathrm{C}$ and $127^{\circ} \mathrm{C}$ respectively is

1 $2: 3$
2 $2 \sqrt{2}: \sqrt{3}$
3 $\sqrt{3}: 2 \sqrt{2}$
4 $\sqrt{2}: \sqrt{3}$
Dual nature of radiation and Matter

142461 The wavelength $\lambda$ of a photon and the deBroglie wavelength of an electron have the same value. Find the ratio of energy of photon of the kinetic energy of electron in terms of mass $m$, speed of light $c$ and Planck constant.

1 $\frac{\lambda \mathrm{mc}}{\mathrm{h}}$
2 $\frac{\mathrm{hmc}}{\lambda}$
3 $\frac{2 \mathrm{hmc}}{\lambda}$
4 $\frac{2 \lambda \mathrm{mc}}{\mathrm{h}}$