142364 The de-Broglie wavelength of an electron of kinetic energy $9 \mathrm{eV}$ is (take, $\mathrm{h}=4 \times 10^{-15} \mathrm{eV}-\mathrm{s}$, c $=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ and the mass $m_{1}$ of electron as $\mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}=0.5 \mathrm{MeV}$ )
142364 The de-Broglie wavelength of an electron of kinetic energy $9 \mathrm{eV}$ is (take, $\mathrm{h}=4 \times 10^{-15} \mathrm{eV}-\mathrm{s}$, c $=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ and the mass $m_{1}$ of electron as $\mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}=0.5 \mathrm{MeV}$ )
142364 The de-Broglie wavelength of an electron of kinetic energy $9 \mathrm{eV}$ is (take, $\mathrm{h}=4 \times 10^{-15} \mathrm{eV}-\mathrm{s}$, c $=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ and the mass $m_{1}$ of electron as $\mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}=0.5 \mathrm{MeV}$ )
142364 The de-Broglie wavelength of an electron of kinetic energy $9 \mathrm{eV}$ is (take, $\mathrm{h}=4 \times 10^{-15} \mathrm{eV}-\mathrm{s}$, c $=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ and the mass $m_{1}$ of electron as $\mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}=0.5 \mathrm{MeV}$ )
142364 The de-Broglie wavelength of an electron of kinetic energy $9 \mathrm{eV}$ is (take, $\mathrm{h}=4 \times 10^{-15} \mathrm{eV}-\mathrm{s}$, c $=3 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ and the mass $m_{1}$ of electron as $\mathrm{m}_{\mathrm{e}} \mathrm{c}^{2}=0.5 \mathrm{MeV}$ )