Einstein s Photo Electric Equation and Energy Quantity Of Radiation (KE, Vmax, Work Function)
Dual nature of radiation and Matter

142274 The stopping potential doubles when the frequency of the incident light changes from $v$ to $\frac{3 v}{2}$. Then the work function of the metal must be

1 $\frac{h v}{2}$
2 hv
3 $2 \mathrm{hv}$
4 none of the above
Dual nature of radiation and Matter

142275 A photon of energy $4 \mathrm{eV}$ is incident on a metal surface whose work function is $2 \mathrm{eV}$. The minimum reverse potential to be applied for stopping the emission of electrons is

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
Dual nature of radiation and Matter

142277 Two identical metal plates show photoelectric effect by a light of wavelength $\lambda_{1}$ on plate 1 and $\lambda_{2}$ on plate 2 (where $\lambda_{1}=2 \lambda_{2}$ ). The maximum kinetic energy will be-

1 $2 \mathrm{~K}_{2}=\mathrm{K}_{1}$
2 $\mathrm{K}_{1} \lt \mathrm{K}_{2} / 2$
3 $\mathrm{K}_{1}>\mathrm{K}_{2} / 2$
4 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}$
Dual nature of radiation and Matter

142278 Light with an energy flux of $18 \mathrm{~W} / \mathrm{cm}^{2}$ falls on a non-reflecting surface at normal incidence. The surface has an area of $20 \mathrm{~cm}^{2}$, then the total momentum delivered on the surface during a span of 30 min is-

1 $2.16 \times 10^{-3} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $1.52 \times 10^{-5} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $8.31 \times 10^{-8} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $18.2 \times 10^{-6} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142279 No photoelectrons are emitted from a metal if the wavelength of the light exceeds $600 \mathrm{~nm}$. The work function of the metal is approximately equal to-

1 $3 \times 10^{-16} \mathrm{~J}$
2 $3 \times 10^{-19} \mathrm{~J}$
3 $3 \times 10^{-20} \mathrm{~J}$
4 $3 \times 10^{-22} \mathrm{~J}$
Dual nature of radiation and Matter

142274 The stopping potential doubles when the frequency of the incident light changes from $v$ to $\frac{3 v}{2}$. Then the work function of the metal must be

1 $\frac{h v}{2}$
2 hv
3 $2 \mathrm{hv}$
4 none of the above
Dual nature of radiation and Matter

142275 A photon of energy $4 \mathrm{eV}$ is incident on a metal surface whose work function is $2 \mathrm{eV}$. The minimum reverse potential to be applied for stopping the emission of electrons is

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
Dual nature of radiation and Matter

142277 Two identical metal plates show photoelectric effect by a light of wavelength $\lambda_{1}$ on plate 1 and $\lambda_{2}$ on plate 2 (where $\lambda_{1}=2 \lambda_{2}$ ). The maximum kinetic energy will be-

1 $2 \mathrm{~K}_{2}=\mathrm{K}_{1}$
2 $\mathrm{K}_{1} \lt \mathrm{K}_{2} / 2$
3 $\mathrm{K}_{1}>\mathrm{K}_{2} / 2$
4 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}$
Dual nature of radiation and Matter

142278 Light with an energy flux of $18 \mathrm{~W} / \mathrm{cm}^{2}$ falls on a non-reflecting surface at normal incidence. The surface has an area of $20 \mathrm{~cm}^{2}$, then the total momentum delivered on the surface during a span of 30 min is-

1 $2.16 \times 10^{-3} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $1.52 \times 10^{-5} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $8.31 \times 10^{-8} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $18.2 \times 10^{-6} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142279 No photoelectrons are emitted from a metal if the wavelength of the light exceeds $600 \mathrm{~nm}$. The work function of the metal is approximately equal to-

1 $3 \times 10^{-16} \mathrm{~J}$
2 $3 \times 10^{-19} \mathrm{~J}$
3 $3 \times 10^{-20} \mathrm{~J}$
4 $3 \times 10^{-22} \mathrm{~J}$
Dual nature of radiation and Matter

142274 The stopping potential doubles when the frequency of the incident light changes from $v$ to $\frac{3 v}{2}$. Then the work function of the metal must be

1 $\frac{h v}{2}$
2 hv
3 $2 \mathrm{hv}$
4 none of the above
Dual nature of radiation and Matter

142275 A photon of energy $4 \mathrm{eV}$ is incident on a metal surface whose work function is $2 \mathrm{eV}$. The minimum reverse potential to be applied for stopping the emission of electrons is

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
Dual nature of radiation and Matter

142277 Two identical metal plates show photoelectric effect by a light of wavelength $\lambda_{1}$ on plate 1 and $\lambda_{2}$ on plate 2 (where $\lambda_{1}=2 \lambda_{2}$ ). The maximum kinetic energy will be-

1 $2 \mathrm{~K}_{2}=\mathrm{K}_{1}$
2 $\mathrm{K}_{1} \lt \mathrm{K}_{2} / 2$
3 $\mathrm{K}_{1}>\mathrm{K}_{2} / 2$
4 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}$
Dual nature of radiation and Matter

142278 Light with an energy flux of $18 \mathrm{~W} / \mathrm{cm}^{2}$ falls on a non-reflecting surface at normal incidence. The surface has an area of $20 \mathrm{~cm}^{2}$, then the total momentum delivered on the surface during a span of 30 min is-

1 $2.16 \times 10^{-3} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $1.52 \times 10^{-5} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $8.31 \times 10^{-8} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $18.2 \times 10^{-6} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142279 No photoelectrons are emitted from a metal if the wavelength of the light exceeds $600 \mathrm{~nm}$. The work function of the metal is approximately equal to-

1 $3 \times 10^{-16} \mathrm{~J}$
2 $3 \times 10^{-19} \mathrm{~J}$
3 $3 \times 10^{-20} \mathrm{~J}$
4 $3 \times 10^{-22} \mathrm{~J}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142274 The stopping potential doubles when the frequency of the incident light changes from $v$ to $\frac{3 v}{2}$. Then the work function of the metal must be

1 $\frac{h v}{2}$
2 hv
3 $2 \mathrm{hv}$
4 none of the above
Dual nature of radiation and Matter

142275 A photon of energy $4 \mathrm{eV}$ is incident on a metal surface whose work function is $2 \mathrm{eV}$. The minimum reverse potential to be applied for stopping the emission of electrons is

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
Dual nature of radiation and Matter

142277 Two identical metal plates show photoelectric effect by a light of wavelength $\lambda_{1}$ on plate 1 and $\lambda_{2}$ on plate 2 (where $\lambda_{1}=2 \lambda_{2}$ ). The maximum kinetic energy will be-

1 $2 \mathrm{~K}_{2}=\mathrm{K}_{1}$
2 $\mathrm{K}_{1} \lt \mathrm{K}_{2} / 2$
3 $\mathrm{K}_{1}>\mathrm{K}_{2} / 2$
4 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}$
Dual nature of radiation and Matter

142278 Light with an energy flux of $18 \mathrm{~W} / \mathrm{cm}^{2}$ falls on a non-reflecting surface at normal incidence. The surface has an area of $20 \mathrm{~cm}^{2}$, then the total momentum delivered on the surface during a span of 30 min is-

1 $2.16 \times 10^{-3} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $1.52 \times 10^{-5} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $8.31 \times 10^{-8} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $18.2 \times 10^{-6} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142279 No photoelectrons are emitted from a metal if the wavelength of the light exceeds $600 \mathrm{~nm}$. The work function of the metal is approximately equal to-

1 $3 \times 10^{-16} \mathrm{~J}$
2 $3 \times 10^{-19} \mathrm{~J}$
3 $3 \times 10^{-20} \mathrm{~J}$
4 $3 \times 10^{-22} \mathrm{~J}$
Dual nature of radiation and Matter

142274 The stopping potential doubles when the frequency of the incident light changes from $v$ to $\frac{3 v}{2}$. Then the work function of the metal must be

1 $\frac{h v}{2}$
2 hv
3 $2 \mathrm{hv}$
4 none of the above
Dual nature of radiation and Matter

142275 A photon of energy $4 \mathrm{eV}$ is incident on a metal surface whose work function is $2 \mathrm{eV}$. The minimum reverse potential to be applied for stopping the emission of electrons is

1 $2 \mathrm{~V}$
2 $4 \mathrm{~V}$
3 $6 \mathrm{~V}$
4 $8 \mathrm{~V}$
Dual nature of radiation and Matter

142277 Two identical metal plates show photoelectric effect by a light of wavelength $\lambda_{1}$ on plate 1 and $\lambda_{2}$ on plate 2 (where $\lambda_{1}=2 \lambda_{2}$ ). The maximum kinetic energy will be-

1 $2 \mathrm{~K}_{2}=\mathrm{K}_{1}$
2 $\mathrm{K}_{1} \lt \mathrm{K}_{2} / 2$
3 $\mathrm{K}_{1}>\mathrm{K}_{2} / 2$
4 $2 \mathrm{~K}_{1}=\mathrm{K}_{2}$
Dual nature of radiation and Matter

142278 Light with an energy flux of $18 \mathrm{~W} / \mathrm{cm}^{2}$ falls on a non-reflecting surface at normal incidence. The surface has an area of $20 \mathrm{~cm}^{2}$, then the total momentum delivered on the surface during a span of 30 min is-

1 $2.16 \times 10^{-3} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
2 $1.52 \times 10^{-5} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
3 $8.31 \times 10^{-8} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
4 $18.2 \times 10^{-6} \mathrm{~kg}-\mathrm{m} / \mathrm{s}$
Dual nature of radiation and Matter

142279 No photoelectrons are emitted from a metal if the wavelength of the light exceeds $600 \mathrm{~nm}$. The work function of the metal is approximately equal to-

1 $3 \times 10^{-16} \mathrm{~J}$
2 $3 \times 10^{-19} \mathrm{~J}$
3 $3 \times 10^{-20} \mathrm{~J}$
4 $3 \times 10^{-22} \mathrm{~J}$