Electron Emission, Photo Electric Effect (Threshol Frequency Stopping Potential)
Dual nature of radiation and Matter

142090 Identify the mismatch of the following

1 photo diode - optical signal
2 LED - spontaneous emission
3 Diode laser - stimulated emission
4 Solar cell - electrical energy into light
5 Photo conducting cell - photo detector
Dual nature of radiation and Matter

142106 The photoelectric threshold wavelength for silver is $\lambda_{0}$. The energy of the electron ejected from the surface of silver by an incident wavelength $\lambda\left(\lambda \lt \lambda_{0}\right)$ will be :

1 $\operatorname{hc}\left(\lambda_{0}-\lambda\right)$
2 $\frac{\mathrm{hc}}{\lambda_{0}-\lambda}$
3 $\frac{\mathrm{h}}{\mathrm{c}}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)$
4 $\operatorname{hc}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)$
Dual nature of radiation and Matter

142109 There are $n_{1}$ photons of frequency $v_{1}$ in a beam of light. In an equally energetic beam there are $n_{2}$ photons of frequency $v_{2}$. Then the correct relation is:

1 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$
2 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=1$
3 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{1}^{2}}{\mathrm{v}_{2}^{2}}$
4 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}$
Dual nature of radiation and Matter

142113 The photoelectric threshold frequency of a metal is $v$. When light of frequency $4 v$ is incident on the metal, the maximum kinetic energy of the emitted photoelectron is

1 $4 \mathrm{~h} v$
2 $3 \mathrm{~h} v$
3 $5 \mathrm{~h} v$
4 $\frac{5 h v}{2}$
Dual nature of radiation and Matter

142090 Identify the mismatch of the following

1 photo diode - optical signal
2 LED - spontaneous emission
3 Diode laser - stimulated emission
4 Solar cell - electrical energy into light
5 Photo conducting cell - photo detector
Dual nature of radiation and Matter

142106 The photoelectric threshold wavelength for silver is $\lambda_{0}$. The energy of the electron ejected from the surface of silver by an incident wavelength $\lambda\left(\lambda \lt \lambda_{0}\right)$ will be :

1 $\operatorname{hc}\left(\lambda_{0}-\lambda\right)$
2 $\frac{\mathrm{hc}}{\lambda_{0}-\lambda}$
3 $\frac{\mathrm{h}}{\mathrm{c}}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)$
4 $\operatorname{hc}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)$
Dual nature of radiation and Matter

142109 There are $n_{1}$ photons of frequency $v_{1}$ in a beam of light. In an equally energetic beam there are $n_{2}$ photons of frequency $v_{2}$. Then the correct relation is:

1 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$
2 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=1$
3 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{1}^{2}}{\mathrm{v}_{2}^{2}}$
4 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}$
Dual nature of radiation and Matter

142113 The photoelectric threshold frequency of a metal is $v$. When light of frequency $4 v$ is incident on the metal, the maximum kinetic energy of the emitted photoelectron is

1 $4 \mathrm{~h} v$
2 $3 \mathrm{~h} v$
3 $5 \mathrm{~h} v$
4 $\frac{5 h v}{2}$
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Dual nature of radiation and Matter

142090 Identify the mismatch of the following

1 photo diode - optical signal
2 LED - spontaneous emission
3 Diode laser - stimulated emission
4 Solar cell - electrical energy into light
5 Photo conducting cell - photo detector
Dual nature of radiation and Matter

142106 The photoelectric threshold wavelength for silver is $\lambda_{0}$. The energy of the electron ejected from the surface of silver by an incident wavelength $\lambda\left(\lambda \lt \lambda_{0}\right)$ will be :

1 $\operatorname{hc}\left(\lambda_{0}-\lambda\right)$
2 $\frac{\mathrm{hc}}{\lambda_{0}-\lambda}$
3 $\frac{\mathrm{h}}{\mathrm{c}}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)$
4 $\operatorname{hc}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)$
Dual nature of radiation and Matter

142109 There are $n_{1}$ photons of frequency $v_{1}$ in a beam of light. In an equally energetic beam there are $n_{2}$ photons of frequency $v_{2}$. Then the correct relation is:

1 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$
2 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=1$
3 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{1}^{2}}{\mathrm{v}_{2}^{2}}$
4 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}$
Dual nature of radiation and Matter

142113 The photoelectric threshold frequency of a metal is $v$. When light of frequency $4 v$ is incident on the metal, the maximum kinetic energy of the emitted photoelectron is

1 $4 \mathrm{~h} v$
2 $3 \mathrm{~h} v$
3 $5 \mathrm{~h} v$
4 $\frac{5 h v}{2}$
Dual nature of radiation and Matter

142090 Identify the mismatch of the following

1 photo diode - optical signal
2 LED - spontaneous emission
3 Diode laser - stimulated emission
4 Solar cell - electrical energy into light
5 Photo conducting cell - photo detector
Dual nature of radiation and Matter

142106 The photoelectric threshold wavelength for silver is $\lambda_{0}$. The energy of the electron ejected from the surface of silver by an incident wavelength $\lambda\left(\lambda \lt \lambda_{0}\right)$ will be :

1 $\operatorname{hc}\left(\lambda_{0}-\lambda\right)$
2 $\frac{\mathrm{hc}}{\lambda_{0}-\lambda}$
3 $\frac{\mathrm{h}}{\mathrm{c}}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)$
4 $\operatorname{hc}\left(\frac{\lambda_{0}-\lambda}{\lambda \lambda_{0}}\right)$
Dual nature of radiation and Matter

142109 There are $n_{1}$ photons of frequency $v_{1}$ in a beam of light. In an equally energetic beam there are $n_{2}$ photons of frequency $v_{2}$. Then the correct relation is:

1 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}$
2 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=1$
3 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{1}^{2}}{\mathrm{v}_{2}^{2}}$
4 $\frac{\mathrm{n}_{1}}{\mathrm{n}_{2}}=\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}$
Dual nature of radiation and Matter

142113 The photoelectric threshold frequency of a metal is $v$. When light of frequency $4 v$ is incident on the metal, the maximum kinetic energy of the emitted photoelectron is

1 $4 \mathrm{~h} v$
2 $3 \mathrm{~h} v$
3 $5 \mathrm{~h} v$
4 $\frac{5 h v}{2}$