POLYNOMIALS
POLYNOMIALS

90019 If \(\alpha\) and \(\beta\) are the zero of 2x\(^{1}\) + 5x − 8, then the value of \((\alpha+\beta)\) is:

1 \(\frac{-5}{2}\)
2 \(\frac{5}{2}\)
3 \(\frac{-9}{2}\)
4 \(\frac{9}{2}\)
POLYNOMIALS

90151 If one zero of the quadratic polynomial kx\(^{1}\) + 3x + k is 2, then the value of k is:

1 \(\frac{5}{6}\)
2 \(\frac{-5}{6}\)
3 \(\frac{6}{5}\)
4 \(\frac{-6}{5}\)
POLYNOMIALS

90070 If two of the zeroes of a cubic polynomial ax\(^{1}\)+ bx\(^{1}\)+ cx + d are zero, then the third zero is:

1 \(\frac{\text{d}}{\text{a}}\)
2 \(\frac{\text{c}}{\text{a}}\)
3 \(\frac{\text{-b}}{\text{a}}\)
4 \(\frac{\text{b}}{\text{a}}\)
POLYNOMIALS

89981 If \(\alpha,\beta\) are the zerose of a polynomial p(x) = x\(^{1}\) + x - 1, then, \({\alpha}^2+{}{\beta}^2\) is equals to:

1 \(\frac{-3}{4}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{4}\)
4 \(\frac{3}{4}\)
POLYNOMIALS

89998 If sin\(\text{A}=\frac{2}{3},\) then value of cotA is:

1 \(\frac{\sqrt{5}}{2}\)
2 \(\frac{3}{2}\)
3 \(\frac{5}{4}\)
4 \(\frac{2}{3}\)
POLYNOMIALS

90019 If \(\alpha\) and \(\beta\) are the zero of 2x\(^{1}\) + 5x − 8, then the value of \((\alpha+\beta)\) is:

1 \(\frac{-5}{2}\)
2 \(\frac{5}{2}\)
3 \(\frac{-9}{2}\)
4 \(\frac{9}{2}\)
POLYNOMIALS

90151 If one zero of the quadratic polynomial kx\(^{1}\) + 3x + k is 2, then the value of k is:

1 \(\frac{5}{6}\)
2 \(\frac{-5}{6}\)
3 \(\frac{6}{5}\)
4 \(\frac{-6}{5}\)
POLYNOMIALS

90070 If two of the zeroes of a cubic polynomial ax\(^{1}\)+ bx\(^{1}\)+ cx + d are zero, then the third zero is:

1 \(\frac{\text{d}}{\text{a}}\)
2 \(\frac{\text{c}}{\text{a}}\)
3 \(\frac{\text{-b}}{\text{a}}\)
4 \(\frac{\text{b}}{\text{a}}\)
POLYNOMIALS

89981 If \(\alpha,\beta\) are the zerose of a polynomial p(x) = x\(^{1}\) + x - 1, then, \({\alpha}^2+{}{\beta}^2\) is equals to:

1 \(\frac{-3}{4}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{4}\)
4 \(\frac{3}{4}\)
POLYNOMIALS

89998 If sin\(\text{A}=\frac{2}{3},\) then value of cotA is:

1 \(\frac{\sqrt{5}}{2}\)
2 \(\frac{3}{2}\)
3 \(\frac{5}{4}\)
4 \(\frac{2}{3}\)
POLYNOMIALS

90019 If \(\alpha\) and \(\beta\) are the zero of 2x\(^{1}\) + 5x − 8, then the value of \((\alpha+\beta)\) is:

1 \(\frac{-5}{2}\)
2 \(\frac{5}{2}\)
3 \(\frac{-9}{2}\)
4 \(\frac{9}{2}\)
POLYNOMIALS

90151 If one zero of the quadratic polynomial kx\(^{1}\) + 3x + k is 2, then the value of k is:

1 \(\frac{5}{6}\)
2 \(\frac{-5}{6}\)
3 \(\frac{6}{5}\)
4 \(\frac{-6}{5}\)
POLYNOMIALS

90070 If two of the zeroes of a cubic polynomial ax\(^{1}\)+ bx\(^{1}\)+ cx + d are zero, then the third zero is:

1 \(\frac{\text{d}}{\text{a}}\)
2 \(\frac{\text{c}}{\text{a}}\)
3 \(\frac{\text{-b}}{\text{a}}\)
4 \(\frac{\text{b}}{\text{a}}\)
POLYNOMIALS

89981 If \(\alpha,\beta\) are the zerose of a polynomial p(x) = x\(^{1}\) + x - 1, then, \({\alpha}^2+{}{\beta}^2\) is equals to:

1 \(\frac{-3}{4}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{4}\)
4 \(\frac{3}{4}\)
POLYNOMIALS

89998 If sin\(\text{A}=\frac{2}{3},\) then value of cotA is:

1 \(\frac{\sqrt{5}}{2}\)
2 \(\frac{3}{2}\)
3 \(\frac{5}{4}\)
4 \(\frac{2}{3}\)
POLYNOMIALS

90019 If \(\alpha\) and \(\beta\) are the zero of 2x\(^{1}\) + 5x − 8, then the value of \((\alpha+\beta)\) is:

1 \(\frac{-5}{2}\)
2 \(\frac{5}{2}\)
3 \(\frac{-9}{2}\)
4 \(\frac{9}{2}\)
POLYNOMIALS

90151 If one zero of the quadratic polynomial kx\(^{1}\) + 3x + k is 2, then the value of k is:

1 \(\frac{5}{6}\)
2 \(\frac{-5}{6}\)
3 \(\frac{6}{5}\)
4 \(\frac{-6}{5}\)
POLYNOMIALS

90070 If two of the zeroes of a cubic polynomial ax\(^{1}\)+ bx\(^{1}\)+ cx + d are zero, then the third zero is:

1 \(\frac{\text{d}}{\text{a}}\)
2 \(\frac{\text{c}}{\text{a}}\)
3 \(\frac{\text{-b}}{\text{a}}\)
4 \(\frac{\text{b}}{\text{a}}\)
POLYNOMIALS

89981 If \(\alpha,\beta\) are the zerose of a polynomial p(x) = x\(^{1}\) + x - 1, then, \({\alpha}^2+{}{\beta}^2\) is equals to:

1 \(\frac{-3}{4}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{4}\)
4 \(\frac{3}{4}\)
POLYNOMIALS

89998 If sin\(\text{A}=\frac{2}{3},\) then value of cotA is:

1 \(\frac{\sqrt{5}}{2}\)
2 \(\frac{3}{2}\)
3 \(\frac{5}{4}\)
4 \(\frac{2}{3}\)
POLYNOMIALS

90019 If \(\alpha\) and \(\beta\) are the zero of 2x\(^{1}\) + 5x − 8, then the value of \((\alpha+\beta)\) is:

1 \(\frac{-5}{2}\)
2 \(\frac{5}{2}\)
3 \(\frac{-9}{2}\)
4 \(\frac{9}{2}\)
POLYNOMIALS

90151 If one zero of the quadratic polynomial kx\(^{1}\) + 3x + k is 2, then the value of k is:

1 \(\frac{5}{6}\)
2 \(\frac{-5}{6}\)
3 \(\frac{6}{5}\)
4 \(\frac{-6}{5}\)
POLYNOMIALS

90070 If two of the zeroes of a cubic polynomial ax\(^{1}\)+ bx\(^{1}\)+ cx + d are zero, then the third zero is:

1 \(\frac{\text{d}}{\text{a}}\)
2 \(\frac{\text{c}}{\text{a}}\)
3 \(\frac{\text{-b}}{\text{a}}\)
4 \(\frac{\text{b}}{\text{a}}\)
POLYNOMIALS

89981 If \(\alpha,\beta\) are the zerose of a polynomial p(x) = x\(^{1}\) + x - 1, then, \({\alpha}^2+{}{\beta}^2\) is equals to:

1 \(\frac{-3}{4}\)
2 \(\frac{5}{4}\)
3 \(\frac{1}{4}\)
4 \(\frac{3}{4}\)
POLYNOMIALS

89998 If sin\(\text{A}=\frac{2}{3},\) then value of cotA is:

1 \(\frac{\sqrt{5}}{2}\)
2 \(\frac{3}{2}\)
3 \(\frac{5}{4}\)
4 \(\frac{2}{3}\)