Domain, Co-domain and Range of Function
Sets, Relation and Function

117462 The domain of the function \(\log _{10}\left(x^2-5 x+6\right)\) is

1 \((-\infty,-1) \cup(-3, \infty)\)
2 \((-\infty, 0) \cup(3, \infty)\)
3 \((-\infty, 2) \cup(3, \infty)\)
4 \((-\infty, \infty)\)
Sets, Relation and Function

117463 The domain of the function \(f(x)=\) \(\sqrt{\mathrm{x}-1}+\sqrt{6-\mathrm{x}}\) is

1 \([1,6]\)
2 \((-\infty, 6)\)
3 \([1, \infty]\)
4 \((-\infty, 6]\)
Sets, Relation and Function

117464 The solution set of the inequality \(5(4 x+6)\lt \) \(25 \mathrm{x}+10\) is

1 \((4, \infty)\)
2 \((-\infty, 4)\)
3 \((-\infty, 5)\)
4 \((5, \infty)\)
5 \((-4,4)\)
Sets, Relation and Function

117465 Let \(f:[-4,2] \rightarrow R\) be given by \(f(x)=\sqrt{16-x^2}\). Then the range of the function \(f\) is

1 \([0,2]\)
2 \([0,2 \sqrt{3}]\)
3 \([0,4]\)
4 \([-2,2]\)
Sets, Relation and Function

117462 The domain of the function \(\log _{10}\left(x^2-5 x+6\right)\) is

1 \((-\infty,-1) \cup(-3, \infty)\)
2 \((-\infty, 0) \cup(3, \infty)\)
3 \((-\infty, 2) \cup(3, \infty)\)
4 \((-\infty, \infty)\)
Sets, Relation and Function

117463 The domain of the function \(f(x)=\) \(\sqrt{\mathrm{x}-1}+\sqrt{6-\mathrm{x}}\) is

1 \([1,6]\)
2 \((-\infty, 6)\)
3 \([1, \infty]\)
4 \((-\infty, 6]\)
Sets, Relation and Function

117464 The solution set of the inequality \(5(4 x+6)\lt \) \(25 \mathrm{x}+10\) is

1 \((4, \infty)\)
2 \((-\infty, 4)\)
3 \((-\infty, 5)\)
4 \((5, \infty)\)
5 \((-4,4)\)
Sets, Relation and Function

117465 Let \(f:[-4,2] \rightarrow R\) be given by \(f(x)=\sqrt{16-x^2}\). Then the range of the function \(f\) is

1 \([0,2]\)
2 \([0,2 \sqrt{3}]\)
3 \([0,4]\)
4 \([-2,2]\)
Sets, Relation and Function

117462 The domain of the function \(\log _{10}\left(x^2-5 x+6\right)\) is

1 \((-\infty,-1) \cup(-3, \infty)\)
2 \((-\infty, 0) \cup(3, \infty)\)
3 \((-\infty, 2) \cup(3, \infty)\)
4 \((-\infty, \infty)\)
Sets, Relation and Function

117463 The domain of the function \(f(x)=\) \(\sqrt{\mathrm{x}-1}+\sqrt{6-\mathrm{x}}\) is

1 \([1,6]\)
2 \((-\infty, 6)\)
3 \([1, \infty]\)
4 \((-\infty, 6]\)
Sets, Relation and Function

117464 The solution set of the inequality \(5(4 x+6)\lt \) \(25 \mathrm{x}+10\) is

1 \((4, \infty)\)
2 \((-\infty, 4)\)
3 \((-\infty, 5)\)
4 \((5, \infty)\)
5 \((-4,4)\)
Sets, Relation and Function

117465 Let \(f:[-4,2] \rightarrow R\) be given by \(f(x)=\sqrt{16-x^2}\). Then the range of the function \(f\) is

1 \([0,2]\)
2 \([0,2 \sqrt{3}]\)
3 \([0,4]\)
4 \([-2,2]\)
Sets, Relation and Function

117462 The domain of the function \(\log _{10}\left(x^2-5 x+6\right)\) is

1 \((-\infty,-1) \cup(-3, \infty)\)
2 \((-\infty, 0) \cup(3, \infty)\)
3 \((-\infty, 2) \cup(3, \infty)\)
4 \((-\infty, \infty)\)
Sets, Relation and Function

117463 The domain of the function \(f(x)=\) \(\sqrt{\mathrm{x}-1}+\sqrt{6-\mathrm{x}}\) is

1 \([1,6]\)
2 \((-\infty, 6)\)
3 \([1, \infty]\)
4 \((-\infty, 6]\)
Sets, Relation and Function

117464 The solution set of the inequality \(5(4 x+6)\lt \) \(25 \mathrm{x}+10\) is

1 \((4, \infty)\)
2 \((-\infty, 4)\)
3 \((-\infty, 5)\)
4 \((5, \infty)\)
5 \((-4,4)\)
Sets, Relation and Function

117465 Let \(f:[-4,2] \rightarrow R\) be given by \(f(x)=\sqrt{16-x^2}\). Then the range of the function \(f\) is

1 \([0,2]\)
2 \([0,2 \sqrt{3}]\)
3 \([0,4]\)
4 \([-2,2]\)