Domain, Co-domain and Range of Function
Sets, Relation and Function

117384 If \(x\) satisfies the inequality \(\log _{25} x^2+\left(\log _5 x\right)^2\lt \) 2 , then \(x\) belongs to

1 \(\left(\frac{1}{5}, 5\right)\)
2 \(\left(\frac{1}{25}, 5\right)\)
3 \(\left(\frac{1}{5}, 25\right)\)
4 \(\left(\frac{1}{25}, 25\right)\)
Sets, Relation and Function

117386 The domain of the function \(f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^2}}\)

1 \([2,3]\)
2 \([2,3)\)
3 \([1,2]\)
4 \([1,2)\)
Sets, Relation and Function

117387 Domain of the function \(\log \left|x^2-9\right|\) is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-[-3,3]\)
3 \(\mathrm{R}-\{-3,3\}\)
4 None of these
Sets, Relation and Function

117388 In which of the following domains \(f(x)\) is continuous, where \(f(x)=\frac{|x+2|}{\tan ^{-1}(x+2)}\) ?
(Note : \(\mathbf{R}\) denotes set of real numbers)

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{-2,2\}\)
3 \(\mathrm{R}-\{-2\}\)
4 \(\{-2,2\}\)
Sets, Relation and Function

117384 If \(x\) satisfies the inequality \(\log _{25} x^2+\left(\log _5 x\right)^2\lt \) 2 , then \(x\) belongs to

1 \(\left(\frac{1}{5}, 5\right)\)
2 \(\left(\frac{1}{25}, 5\right)\)
3 \(\left(\frac{1}{5}, 25\right)\)
4 \(\left(\frac{1}{25}, 25\right)\)
Sets, Relation and Function

117386 The domain of the function \(f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^2}}\)

1 \([2,3]\)
2 \([2,3)\)
3 \([1,2]\)
4 \([1,2)\)
Sets, Relation and Function

117387 Domain of the function \(\log \left|x^2-9\right|\) is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-[-3,3]\)
3 \(\mathrm{R}-\{-3,3\}\)
4 None of these
Sets, Relation and Function

117388 In which of the following domains \(f(x)\) is continuous, where \(f(x)=\frac{|x+2|}{\tan ^{-1}(x+2)}\) ?
(Note : \(\mathbf{R}\) denotes set of real numbers)

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{-2,2\}\)
3 \(\mathrm{R}-\{-2\}\)
4 \(\{-2,2\}\)
Sets, Relation and Function

117384 If \(x\) satisfies the inequality \(\log _{25} x^2+\left(\log _5 x\right)^2\lt \) 2 , then \(x\) belongs to

1 \(\left(\frac{1}{5}, 5\right)\)
2 \(\left(\frac{1}{25}, 5\right)\)
3 \(\left(\frac{1}{5}, 25\right)\)
4 \(\left(\frac{1}{25}, 25\right)\)
Sets, Relation and Function

117386 The domain of the function \(f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^2}}\)

1 \([2,3]\)
2 \([2,3)\)
3 \([1,2]\)
4 \([1,2)\)
Sets, Relation and Function

117387 Domain of the function \(\log \left|x^2-9\right|\) is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-[-3,3]\)
3 \(\mathrm{R}-\{-3,3\}\)
4 None of these
Sets, Relation and Function

117388 In which of the following domains \(f(x)\) is continuous, where \(f(x)=\frac{|x+2|}{\tan ^{-1}(x+2)}\) ?
(Note : \(\mathbf{R}\) denotes set of real numbers)

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{-2,2\}\)
3 \(\mathrm{R}-\{-2\}\)
4 \(\{-2,2\}\)
Sets, Relation and Function

117384 If \(x\) satisfies the inequality \(\log _{25} x^2+\left(\log _5 x\right)^2\lt \) 2 , then \(x\) belongs to

1 \(\left(\frac{1}{5}, 5\right)\)
2 \(\left(\frac{1}{25}, 5\right)\)
3 \(\left(\frac{1}{5}, 25\right)\)
4 \(\left(\frac{1}{25}, 25\right)\)
Sets, Relation and Function

117386 The domain of the function \(f(x)=\frac{\sin ^{-1}(x-3)}{\sqrt{9-x^2}}\)

1 \([2,3]\)
2 \([2,3)\)
3 \([1,2]\)
4 \([1,2)\)
Sets, Relation and Function

117387 Domain of the function \(\log \left|x^2-9\right|\) is

1 \(\mathrm{R}\)
2 \(\mathrm{R}-[-3,3]\)
3 \(\mathrm{R}-\{-3,3\}\)
4 None of these
Sets, Relation and Function

117388 In which of the following domains \(f(x)\) is continuous, where \(f(x)=\frac{|x+2|}{\tan ^{-1}(x+2)}\) ?
(Note : \(\mathbf{R}\) denotes set of real numbers)

1 \(\mathrm{R}\)
2 \(\mathrm{R}-\{-2,2\}\)
3 \(\mathrm{R}-\{-2\}\)
4 \(\{-2,2\}\)