Inverse of Function and Binary Operation
Sets, Relation and Function

117191 In \(Z\), the set of all integers, the inverse of -7 with respect to * defined by \(a * b=a+b+7\) for all \(a, b \in Z\) is

1 -14
2 7
3 14
4 -7
Sets, Relation and Function

117193 If \(f:[1, \infty) \rightarrow[2, \infty)\) is given by \(f(x)=x+\frac{1}{x}\), then \(f^{-1}(x)\) is equal to

1 \(\frac{x+\sqrt{x^2-4}}{2}\)
2 \(\frac{x}{1+x^2}\)
3 \(\frac{x-\sqrt{x^2-4}}{2}\)
4 \(1+\sqrt{\mathrm{x}-4}\)
Sets, Relation and Function

117194 Let \(f: R \rightarrow R\) be defined by \(f(x)=2 x+6\) which is a bijective mapping then \(\mathrm{f}^{-1}(x)\) is given by

1 \(\frac{x}{2}-3\)
2 \(2 x+6\)
3 \(\mathrm{x}-3\)
4 \(6 x+2\)
Sets, Relation and Function

117196 If \(f(x)=\frac{3 x+2}{5 x-3}\), then

1 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
2 \(f^{-1}(x)=-f(x)\)
3 \(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=-\mathrm{x}\)
4 \(f^{-1}(x)=-\frac{1}{19} f(x)\)
Sets, Relation and Function

117198 If a function \(f: R \rightarrow R\) is defined by \(f(x)=\frac{4 x}{5}+3\), then \(f^{-1}(x)=\)

1 \(\frac{5(\mathrm{x}-3)}{4}\)
2 \(\frac{4(\mathrm{x}+3)}{5}\)
3 \(\frac{4(\mathrm{x}-3)}{5}\)
4 \(\frac{5(\mathrm{x}+3)}{4}\)
Sets, Relation and Function

117191 In \(Z\), the set of all integers, the inverse of -7 with respect to * defined by \(a * b=a+b+7\) for all \(a, b \in Z\) is

1 -14
2 7
3 14
4 -7
Sets, Relation and Function

117193 If \(f:[1, \infty) \rightarrow[2, \infty)\) is given by \(f(x)=x+\frac{1}{x}\), then \(f^{-1}(x)\) is equal to

1 \(\frac{x+\sqrt{x^2-4}}{2}\)
2 \(\frac{x}{1+x^2}\)
3 \(\frac{x-\sqrt{x^2-4}}{2}\)
4 \(1+\sqrt{\mathrm{x}-4}\)
Sets, Relation and Function

117194 Let \(f: R \rightarrow R\) be defined by \(f(x)=2 x+6\) which is a bijective mapping then \(\mathrm{f}^{-1}(x)\) is given by

1 \(\frac{x}{2}-3\)
2 \(2 x+6\)
3 \(\mathrm{x}-3\)
4 \(6 x+2\)
Sets, Relation and Function

117196 If \(f(x)=\frac{3 x+2}{5 x-3}\), then

1 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
2 \(f^{-1}(x)=-f(x)\)
3 \(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=-\mathrm{x}\)
4 \(f^{-1}(x)=-\frac{1}{19} f(x)\)
Sets, Relation and Function

117198 If a function \(f: R \rightarrow R\) is defined by \(f(x)=\frac{4 x}{5}+3\), then \(f^{-1}(x)=\)

1 \(\frac{5(\mathrm{x}-3)}{4}\)
2 \(\frac{4(\mathrm{x}+3)}{5}\)
3 \(\frac{4(\mathrm{x}-3)}{5}\)
4 \(\frac{5(\mathrm{x}+3)}{4}\)
Sets, Relation and Function

117191 In \(Z\), the set of all integers, the inverse of -7 with respect to * defined by \(a * b=a+b+7\) for all \(a, b \in Z\) is

1 -14
2 7
3 14
4 -7
Sets, Relation and Function

117193 If \(f:[1, \infty) \rightarrow[2, \infty)\) is given by \(f(x)=x+\frac{1}{x}\), then \(f^{-1}(x)\) is equal to

1 \(\frac{x+\sqrt{x^2-4}}{2}\)
2 \(\frac{x}{1+x^2}\)
3 \(\frac{x-\sqrt{x^2-4}}{2}\)
4 \(1+\sqrt{\mathrm{x}-4}\)
Sets, Relation and Function

117194 Let \(f: R \rightarrow R\) be defined by \(f(x)=2 x+6\) which is a bijective mapping then \(\mathrm{f}^{-1}(x)\) is given by

1 \(\frac{x}{2}-3\)
2 \(2 x+6\)
3 \(\mathrm{x}-3\)
4 \(6 x+2\)
Sets, Relation and Function

117196 If \(f(x)=\frac{3 x+2}{5 x-3}\), then

1 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
2 \(f^{-1}(x)=-f(x)\)
3 \(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=-\mathrm{x}\)
4 \(f^{-1}(x)=-\frac{1}{19} f(x)\)
Sets, Relation and Function

117198 If a function \(f: R \rightarrow R\) is defined by \(f(x)=\frac{4 x}{5}+3\), then \(f^{-1}(x)=\)

1 \(\frac{5(\mathrm{x}-3)}{4}\)
2 \(\frac{4(\mathrm{x}+3)}{5}\)
3 \(\frac{4(\mathrm{x}-3)}{5}\)
4 \(\frac{5(\mathrm{x}+3)}{4}\)
Sets, Relation and Function

117191 In \(Z\), the set of all integers, the inverse of -7 with respect to * defined by \(a * b=a+b+7\) for all \(a, b \in Z\) is

1 -14
2 7
3 14
4 -7
Sets, Relation and Function

117193 If \(f:[1, \infty) \rightarrow[2, \infty)\) is given by \(f(x)=x+\frac{1}{x}\), then \(f^{-1}(x)\) is equal to

1 \(\frac{x+\sqrt{x^2-4}}{2}\)
2 \(\frac{x}{1+x^2}\)
3 \(\frac{x-\sqrt{x^2-4}}{2}\)
4 \(1+\sqrt{\mathrm{x}-4}\)
Sets, Relation and Function

117194 Let \(f: R \rightarrow R\) be defined by \(f(x)=2 x+6\) which is a bijective mapping then \(\mathrm{f}^{-1}(x)\) is given by

1 \(\frac{x}{2}-3\)
2 \(2 x+6\)
3 \(\mathrm{x}-3\)
4 \(6 x+2\)
Sets, Relation and Function

117196 If \(f(x)=\frac{3 x+2}{5 x-3}\), then

1 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
2 \(f^{-1}(x)=-f(x)\)
3 \(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=-\mathrm{x}\)
4 \(f^{-1}(x)=-\frac{1}{19} f(x)\)
Sets, Relation and Function

117198 If a function \(f: R \rightarrow R\) is defined by \(f(x)=\frac{4 x}{5}+3\), then \(f^{-1}(x)=\)

1 \(\frac{5(\mathrm{x}-3)}{4}\)
2 \(\frac{4(\mathrm{x}+3)}{5}\)
3 \(\frac{4(\mathrm{x}-3)}{5}\)
4 \(\frac{5(\mathrm{x}+3)}{4}\)
Sets, Relation and Function

117191 In \(Z\), the set of all integers, the inverse of -7 with respect to * defined by \(a * b=a+b+7\) for all \(a, b \in Z\) is

1 -14
2 7
3 14
4 -7
Sets, Relation and Function

117193 If \(f:[1, \infty) \rightarrow[2, \infty)\) is given by \(f(x)=x+\frac{1}{x}\), then \(f^{-1}(x)\) is equal to

1 \(\frac{x+\sqrt{x^2-4}}{2}\)
2 \(\frac{x}{1+x^2}\)
3 \(\frac{x-\sqrt{x^2-4}}{2}\)
4 \(1+\sqrt{\mathrm{x}-4}\)
Sets, Relation and Function

117194 Let \(f: R \rightarrow R\) be defined by \(f(x)=2 x+6\) which is a bijective mapping then \(\mathrm{f}^{-1}(x)\) is given by

1 \(\frac{x}{2}-3\)
2 \(2 x+6\)
3 \(\mathrm{x}-3\)
4 \(6 x+2\)
Sets, Relation and Function

117196 If \(f(x)=\frac{3 x+2}{5 x-3}\), then

1 \(\mathrm{f}^{-1}(\mathrm{x})=\mathrm{f}(\mathrm{x})\)
2 \(f^{-1}(x)=-f(x)\)
3 \(\mathrm{f}^{-1}(\mathrm{f}(\mathrm{x}))=-\mathrm{x}\)
4 \(f^{-1}(x)=-\frac{1}{19} f(x)\)
Sets, Relation and Function

117198 If a function \(f: R \rightarrow R\) is defined by \(f(x)=\frac{4 x}{5}+3\), then \(f^{-1}(x)=\)

1 \(\frac{5(\mathrm{x}-3)}{4}\)
2 \(\frac{4(\mathrm{x}+3)}{5}\)
3 \(\frac{4(\mathrm{x}-3)}{5}\)
4 \(\frac{5(\mathrm{x}+3)}{4}\)