117042
Let \(f: R \rightarrow R\) be defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{ccc}\mathbf{2 x} & ; & \mathbf{x}>\mathbf{3} \\ \mathbf{x}^2 & ; & \mathbf{1}\lt \mathbf{x} \leq \mathbf{3} \\ \mathbf{3 x} & ; & \mathbf{x} \leq \mathbf{1}\end{array}\right.\)
Then \(\mathbf{f}(-\mathbf{1})+\mathbf{f}(\mathbf{2})+\mathbf{f}(\mathbf{4})\) is
117042
Let \(f: R \rightarrow R\) be defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{ccc}\mathbf{2 x} & ; & \mathbf{x}>\mathbf{3} \\ \mathbf{x}^2 & ; & \mathbf{1}\lt \mathbf{x} \leq \mathbf{3} \\ \mathbf{3 x} & ; & \mathbf{x} \leq \mathbf{1}\end{array}\right.\)
Then \(\mathbf{f}(-\mathbf{1})+\mathbf{f}(\mathbf{2})+\mathbf{f}(\mathbf{4})\) is
117042
Let \(f: R \rightarrow R\) be defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{ccc}\mathbf{2 x} & ; & \mathbf{x}>\mathbf{3} \\ \mathbf{x}^2 & ; & \mathbf{1}\lt \mathbf{x} \leq \mathbf{3} \\ \mathbf{3 x} & ; & \mathbf{x} \leq \mathbf{1}\end{array}\right.\)
Then \(\mathbf{f}(-\mathbf{1})+\mathbf{f}(\mathbf{2})+\mathbf{f}(\mathbf{4})\) is
117042
Let \(f: R \rightarrow R\) be defined by
\(\mathbf{f}(\mathbf{x})=\left\{\begin{array}{ccc}\mathbf{2 x} & ; & \mathbf{x}>\mathbf{3} \\ \mathbf{x}^2 & ; & \mathbf{1}\lt \mathbf{x} \leq \mathbf{3} \\ \mathbf{3 x} & ; & \mathbf{x} \leq \mathbf{1}\end{array}\right.\)
Then \(\mathbf{f}(-\mathbf{1})+\mathbf{f}(\mathbf{2})+\mathbf{f}(\mathbf{4})\) is