Sets and types of Sets
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116730 If \(A\) and \(B\) are two such events that \(P(A \cup B)\) \(=P(A \cap B)\), then which of the following is true?

1 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=0\)
2 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})\)
3 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=2 \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})\)
4 None of the above
Sets, Relation and Function

116732 If \(A=\{1,3,5,7,9,11,13,15,16,17\}, B=\{2,4\), \(6,8,10,12,14,16,18\}\) and \(N=\{1,2,3,4,5\), \(\cdots \cdots 18\}\) is the universal set, then \(A^{\prime} \cup((A \cup B)\) \(B^{\prime}\) ) is

1 \(\mathrm{A}\)
2 \(\mathrm{N}\)
3 \(\mathrm{B}\)
4 none of these
Sets, Relation and Function

116736 Let \(Z\) denotes the set of all integers and \(A=\{(a\), b) : \(\left.\mathbf{a}^2+3 b^2=28, a, b \in Z\right\}\) and \(B=\{(a, b): a\lt \) \(b, a, b \in Z\}\). Then, the number of elements in \(A\) \(\cap B\) is

1 2
2 4
3 6
4 5
Sets, Relation and Function

116737 Let \(F_1\) be the set of parallelograms, \(F_2\) be the set of rectangles, \(F_3\) be the set of rhombus, \(F_4\) be the set of squares and \(F_5\) be the set of trapeziums in a plane. Then, \(F_1\) may be equal to

1 \(\mathrm{F}_2 \cap \mathrm{F}_3\)
2 \(\mathrm{F}_3 \cap \mathrm{F}_4\)
3 \(\mathrm{F}_2 \cup \mathrm{F}_5\)
4 \(\mathrm{F}_2 \cup \mathrm{F}_3 \cup \mathrm{F}_4 \cup \mathrm{F}_1\)
Sets, Relation and Function

116730 If \(A\) and \(B\) are two such events that \(P(A \cup B)\) \(=P(A \cap B)\), then which of the following is true?

1 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=0\)
2 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})\)
3 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=2 \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})\)
4 None of the above
Sets, Relation and Function

116732 If \(A=\{1,3,5,7,9,11,13,15,16,17\}, B=\{2,4\), \(6,8,10,12,14,16,18\}\) and \(N=\{1,2,3,4,5\), \(\cdots \cdots 18\}\) is the universal set, then \(A^{\prime} \cup((A \cup B)\) \(B^{\prime}\) ) is

1 \(\mathrm{A}\)
2 \(\mathrm{N}\)
3 \(\mathrm{B}\)
4 none of these
Sets, Relation and Function

116736 Let \(Z\) denotes the set of all integers and \(A=\{(a\), b) : \(\left.\mathbf{a}^2+3 b^2=28, a, b \in Z\right\}\) and \(B=\{(a, b): a\lt \) \(b, a, b \in Z\}\). Then, the number of elements in \(A\) \(\cap B\) is

1 2
2 4
3 6
4 5
Sets, Relation and Function

116737 Let \(F_1\) be the set of parallelograms, \(F_2\) be the set of rectangles, \(F_3\) be the set of rhombus, \(F_4\) be the set of squares and \(F_5\) be the set of trapeziums in a plane. Then, \(F_1\) may be equal to

1 \(\mathrm{F}_2 \cap \mathrm{F}_3\)
2 \(\mathrm{F}_3 \cap \mathrm{F}_4\)
3 \(\mathrm{F}_2 \cup \mathrm{F}_5\)
4 \(\mathrm{F}_2 \cup \mathrm{F}_3 \cup \mathrm{F}_4 \cup \mathrm{F}_1\)
Sets, Relation and Function

116730 If \(A\) and \(B\) are two such events that \(P(A \cup B)\) \(=P(A \cap B)\), then which of the following is true?

1 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=0\)
2 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})\)
3 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=2 \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})\)
4 None of the above
Sets, Relation and Function

116732 If \(A=\{1,3,5,7,9,11,13,15,16,17\}, B=\{2,4\), \(6,8,10,12,14,16,18\}\) and \(N=\{1,2,3,4,5\), \(\cdots \cdots 18\}\) is the universal set, then \(A^{\prime} \cup((A \cup B)\) \(B^{\prime}\) ) is

1 \(\mathrm{A}\)
2 \(\mathrm{N}\)
3 \(\mathrm{B}\)
4 none of these
Sets, Relation and Function

116736 Let \(Z\) denotes the set of all integers and \(A=\{(a\), b) : \(\left.\mathbf{a}^2+3 b^2=28, a, b \in Z\right\}\) and \(B=\{(a, b): a\lt \) \(b, a, b \in Z\}\). Then, the number of elements in \(A\) \(\cap B\) is

1 2
2 4
3 6
4 5
Sets, Relation and Function

116737 Let \(F_1\) be the set of parallelograms, \(F_2\) be the set of rectangles, \(F_3\) be the set of rhombus, \(F_4\) be the set of squares and \(F_5\) be the set of trapeziums in a plane. Then, \(F_1\) may be equal to

1 \(\mathrm{F}_2 \cap \mathrm{F}_3\)
2 \(\mathrm{F}_3 \cap \mathrm{F}_4\)
3 \(\mathrm{F}_2 \cup \mathrm{F}_5\)
4 \(\mathrm{F}_2 \cup \mathrm{F}_3 \cup \mathrm{F}_4 \cup \mathrm{F}_1\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Sets, Relation and Function

116730 If \(A\) and \(B\) are two such events that \(P(A \cup B)\) \(=P(A \cap B)\), then which of the following is true?

1 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=0\)
2 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})\)
3 \(\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})=2 \mathrm{P}(\mathrm{A}) \mathrm{P}(\mathrm{B} / \mathrm{A})\)
4 None of the above
Sets, Relation and Function

116732 If \(A=\{1,3,5,7,9,11,13,15,16,17\}, B=\{2,4\), \(6,8,10,12,14,16,18\}\) and \(N=\{1,2,3,4,5\), \(\cdots \cdots 18\}\) is the universal set, then \(A^{\prime} \cup((A \cup B)\) \(B^{\prime}\) ) is

1 \(\mathrm{A}\)
2 \(\mathrm{N}\)
3 \(\mathrm{B}\)
4 none of these
Sets, Relation and Function

116736 Let \(Z\) denotes the set of all integers and \(A=\{(a\), b) : \(\left.\mathbf{a}^2+3 b^2=28, a, b \in Z\right\}\) and \(B=\{(a, b): a\lt \) \(b, a, b \in Z\}\). Then, the number of elements in \(A\) \(\cap B\) is

1 2
2 4
3 6
4 5
Sets, Relation and Function

116737 Let \(F_1\) be the set of parallelograms, \(F_2\) be the set of rectangles, \(F_3\) be the set of rhombus, \(F_4\) be the set of squares and \(F_5\) be the set of trapeziums in a plane. Then, \(F_1\) may be equal to

1 \(\mathrm{F}_2 \cap \mathrm{F}_3\)
2 \(\mathrm{F}_3 \cap \mathrm{F}_4\)
3 \(\mathrm{F}_2 \cup \mathrm{F}_5\)
4 \(\mathrm{F}_2 \cup \mathrm{F}_3 \cup \mathrm{F}_4 \cup \mathrm{F}_1\)