Sum of Special Series: Σn, Σn², and Σn³
Sequence and Series

118888 In a bank, the principal increases continuously at the rate of \(6 \%\) per year. Then the time required to doubling \(₹ \mathbf{6 0 0 0}\) rupees is........ (in year)

1 \(\frac{50}{3} \log 2\)
2 \(\frac{30}{3} \log 6\)
3 \(\frac{50}{3} \log 3\)
4 \(\frac{50}{3} \log 12\)
Sequence and Series

118889 Sum of the series \(1(1)+2(1+3)+3(1+3+5)\) \(+4(1+3+5+7)+\ldots .+10(1+3+5+7\) \(+\ldots .+19)\) is equal to

1 385
2 1025
3 1125
4 2025
5 3025
Sequence and Series

118890 The value of
\(\frac{1}{\sqrt{10}-\sqrt{9}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\ldots .-\frac{1}{\sqrt{121}-\sqrt{120}}\)
is equal to

1 -10
2 11
3 14
4 13
5 -8
Sequence and Series

118891 The sum of the series
\(\frac{1^2}{1.2}+\frac{1^2+2^2}{2.3}+\frac{1^2+2^2+3^2}{3.4}+\ldots\). upto 20 terms is

1 \(\frac{205}{3}\)
2 \(\frac{200}{3}\)
3 \(\frac{220}{3}\)
4 \(\frac{210}{3}\)
Sequence and Series

118892 \(11^3+12^3+13^3+\ldots \ldots \ldots \ldots . .+20^3\) is

1 an even integer
2 an odd integer divisible by 5
3 multiple of 10
4 an odd integer but not a multiple of 5
Sequence and Series

118888 In a bank, the principal increases continuously at the rate of \(6 \%\) per year. Then the time required to doubling \(₹ \mathbf{6 0 0 0}\) rupees is........ (in year)

1 \(\frac{50}{3} \log 2\)
2 \(\frac{30}{3} \log 6\)
3 \(\frac{50}{3} \log 3\)
4 \(\frac{50}{3} \log 12\)
Sequence and Series

118889 Sum of the series \(1(1)+2(1+3)+3(1+3+5)\) \(+4(1+3+5+7)+\ldots .+10(1+3+5+7\) \(+\ldots .+19)\) is equal to

1 385
2 1025
3 1125
4 2025
5 3025
Sequence and Series

118890 The value of
\(\frac{1}{\sqrt{10}-\sqrt{9}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\ldots .-\frac{1}{\sqrt{121}-\sqrt{120}}\)
is equal to

1 -10
2 11
3 14
4 13
5 -8
Sequence and Series

118891 The sum of the series
\(\frac{1^2}{1.2}+\frac{1^2+2^2}{2.3}+\frac{1^2+2^2+3^2}{3.4}+\ldots\). upto 20 terms is

1 \(\frac{205}{3}\)
2 \(\frac{200}{3}\)
3 \(\frac{220}{3}\)
4 \(\frac{210}{3}\)
Sequence and Series

118892 \(11^3+12^3+13^3+\ldots \ldots \ldots \ldots . .+20^3\) is

1 an even integer
2 an odd integer divisible by 5
3 multiple of 10
4 an odd integer but not a multiple of 5
Sequence and Series

118888 In a bank, the principal increases continuously at the rate of \(6 \%\) per year. Then the time required to doubling \(₹ \mathbf{6 0 0 0}\) rupees is........ (in year)

1 \(\frac{50}{3} \log 2\)
2 \(\frac{30}{3} \log 6\)
3 \(\frac{50}{3} \log 3\)
4 \(\frac{50}{3} \log 12\)
Sequence and Series

118889 Sum of the series \(1(1)+2(1+3)+3(1+3+5)\) \(+4(1+3+5+7)+\ldots .+10(1+3+5+7\) \(+\ldots .+19)\) is equal to

1 385
2 1025
3 1125
4 2025
5 3025
Sequence and Series

118890 The value of
\(\frac{1}{\sqrt{10}-\sqrt{9}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\ldots .-\frac{1}{\sqrt{121}-\sqrt{120}}\)
is equal to

1 -10
2 11
3 14
4 13
5 -8
Sequence and Series

118891 The sum of the series
\(\frac{1^2}{1.2}+\frac{1^2+2^2}{2.3}+\frac{1^2+2^2+3^2}{3.4}+\ldots\). upto 20 terms is

1 \(\frac{205}{3}\)
2 \(\frac{200}{3}\)
3 \(\frac{220}{3}\)
4 \(\frac{210}{3}\)
Sequence and Series

118892 \(11^3+12^3+13^3+\ldots \ldots \ldots \ldots . .+20^3\) is

1 an even integer
2 an odd integer divisible by 5
3 multiple of 10
4 an odd integer but not a multiple of 5
Sequence and Series

118888 In a bank, the principal increases continuously at the rate of \(6 \%\) per year. Then the time required to doubling \(₹ \mathbf{6 0 0 0}\) rupees is........ (in year)

1 \(\frac{50}{3} \log 2\)
2 \(\frac{30}{3} \log 6\)
3 \(\frac{50}{3} \log 3\)
4 \(\frac{50}{3} \log 12\)
Sequence and Series

118889 Sum of the series \(1(1)+2(1+3)+3(1+3+5)\) \(+4(1+3+5+7)+\ldots .+10(1+3+5+7\) \(+\ldots .+19)\) is equal to

1 385
2 1025
3 1125
4 2025
5 3025
Sequence and Series

118890 The value of
\(\frac{1}{\sqrt{10}-\sqrt{9}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\ldots .-\frac{1}{\sqrt{121}-\sqrt{120}}\)
is equal to

1 -10
2 11
3 14
4 13
5 -8
Sequence and Series

118891 The sum of the series
\(\frac{1^2}{1.2}+\frac{1^2+2^2}{2.3}+\frac{1^2+2^2+3^2}{3.4}+\ldots\). upto 20 terms is

1 \(\frac{205}{3}\)
2 \(\frac{200}{3}\)
3 \(\frac{220}{3}\)
4 \(\frac{210}{3}\)
Sequence and Series

118892 \(11^3+12^3+13^3+\ldots \ldots \ldots \ldots . .+20^3\) is

1 an even integer
2 an odd integer divisible by 5
3 multiple of 10
4 an odd integer but not a multiple of 5
Sequence and Series

118888 In a bank, the principal increases continuously at the rate of \(6 \%\) per year. Then the time required to doubling \(₹ \mathbf{6 0 0 0}\) rupees is........ (in year)

1 \(\frac{50}{3} \log 2\)
2 \(\frac{30}{3} \log 6\)
3 \(\frac{50}{3} \log 3\)
4 \(\frac{50}{3} \log 12\)
Sequence and Series

118889 Sum of the series \(1(1)+2(1+3)+3(1+3+5)\) \(+4(1+3+5+7)+\ldots .+10(1+3+5+7\) \(+\ldots .+19)\) is equal to

1 385
2 1025
3 1125
4 2025
5 3025
Sequence and Series

118890 The value of
\(\frac{1}{\sqrt{10}-\sqrt{9}}-\frac{1}{\sqrt{11}-\sqrt{10}}+\frac{1}{\sqrt{12}-\sqrt{11}}-\ldots .-\frac{1}{\sqrt{121}-\sqrt{120}}\)
is equal to

1 -10
2 11
3 14
4 13
5 -8
Sequence and Series

118891 The sum of the series
\(\frac{1^2}{1.2}+\frac{1^2+2^2}{2.3}+\frac{1^2+2^2+3^2}{3.4}+\ldots\). upto 20 terms is

1 \(\frac{205}{3}\)
2 \(\frac{200}{3}\)
3 \(\frac{220}{3}\)
4 \(\frac{210}{3}\)
Sequence and Series

118892 \(11^3+12^3+13^3+\ldots \ldots \ldots \ldots . .+20^3\) is

1 an even integer
2 an odd integer divisible by 5
3 multiple of 10
4 an odd integer but not a multiple of 5