118680
The arithmetic mean of the series \(1,2,4,8\), \(16, \ldots . ., 2^{\mathrm{n}}\) is
#[Qdiff: Very Easy, QCat: Theory Based, examname: SRM JEEE-2011]\(\therefore \text { Required mean }=\frac{1+2+4+8+\ldots .+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{2^0+2^1+2^2+\ldots \ldots+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{1\left(\frac{2^{n+1}-1}{2-1}\right)}{n+1}\)
, \({\left[\because 2^0, 2^1, 2^2, \ldots \ldots 2^{\text {n }} \text { is a G.P. }\right]}\)
, \(=\frac{2^{n+1}-1}{n+1}\)]#
118680
The arithmetic mean of the series \(1,2,4,8\), \(16, \ldots . ., 2^{\mathrm{n}}\) is
#[Qdiff: Very Easy, QCat: Theory Based, examname: SRM JEEE-2011]\(\therefore \text { Required mean }=\frac{1+2+4+8+\ldots .+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{2^0+2^1+2^2+\ldots \ldots+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{1\left(\frac{2^{n+1}-1}{2-1}\right)}{n+1}\)
, \({\left[\because 2^0, 2^1, 2^2, \ldots \ldots 2^{\text {n }} \text { is a G.P. }\right]}\)
, \(=\frac{2^{n+1}-1}{n+1}\)]#
118680
The arithmetic mean of the series \(1,2,4,8\), \(16, \ldots . ., 2^{\mathrm{n}}\) is
#[Qdiff: Very Easy, QCat: Theory Based, examname: SRM JEEE-2011]\(\therefore \text { Required mean }=\frac{1+2+4+8+\ldots .+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{2^0+2^1+2^2+\ldots \ldots+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{1\left(\frac{2^{n+1}-1}{2-1}\right)}{n+1}\)
, \({\left[\because 2^0, 2^1, 2^2, \ldots \ldots 2^{\text {n }} \text { is a G.P. }\right]}\)
, \(=\frac{2^{n+1}-1}{n+1}\)]#
118680
The arithmetic mean of the series \(1,2,4,8\), \(16, \ldots . ., 2^{\mathrm{n}}\) is
#[Qdiff: Very Easy, QCat: Theory Based, examname: SRM JEEE-2011]\(\therefore \text { Required mean }=\frac{1+2+4+8+\ldots .+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{2^0+2^1+2^2+\ldots \ldots+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{1\left(\frac{2^{n+1}-1}{2-1}\right)}{n+1}\)
, \({\left[\because 2^0, 2^1, 2^2, \ldots \ldots 2^{\text {n }} \text { is a G.P. }\right]}\)
, \(=\frac{2^{n+1}-1}{n+1}\)]#
118680
The arithmetic mean of the series \(1,2,4,8\), \(16, \ldots . ., 2^{\mathrm{n}}\) is
#[Qdiff: Very Easy, QCat: Theory Based, examname: SRM JEEE-2011]\(\therefore \text { Required mean }=\frac{1+2+4+8+\ldots .+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{2^0+2^1+2^2+\ldots \ldots+2^{\mathrm{n}}}{\mathrm{n}+1}\)
, \(=\frac{1\left(\frac{2^{n+1}-1}{2-1}\right)}{n+1}\)
, \({\left[\because 2^0, 2^1, 2^2, \ldots \ldots 2^{\text {n }} \text { is a G.P. }\right]}\)
, \(=\frac{2^{n+1}-1}{n+1}\)]#