Simple Applications
Permutation and Combination

119270 Eight different letters of an alphabet are given. Words of four letters from these are formed. The number of such words with at least one letter repeated is

1 \(\left(\begin{array}{l}8 \\ 4\end{array}\right)-{ }^8 \mathrm{P}_4\)
2 \(8^4+\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
3 \(8^4-{ }^8 \mathrm{P}_4\)
4 \(8^4-\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
Permutation and Combination

119291 The number of positive divisors of 4896 is

1 32
2 34
3 36
4 38
Permutation and Combination

119292 The last digit of \(583 !+7^{291}\) is

1 1
2 2
3 0
4 3
Permutation and Combination

119315 If \((n+2) !=2550 \times n\) !, then the value of \(n\) is equal to

1 8
2 49
3 50
4 51
Permutation and Combination

119247 If \({ }^{2 n+3} C_{2 n}-{ }^{2 n+2} C_{2 n-1}=15(2 n+1)\), then \(n=\)

1 13
2 14
3 27
4 15
Permutation and Combination

119270 Eight different letters of an alphabet are given. Words of four letters from these are formed. The number of such words with at least one letter repeated is

1 \(\left(\begin{array}{l}8 \\ 4\end{array}\right)-{ }^8 \mathrm{P}_4\)
2 \(8^4+\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
3 \(8^4-{ }^8 \mathrm{P}_4\)
4 \(8^4-\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
Permutation and Combination

119291 The number of positive divisors of 4896 is

1 32
2 34
3 36
4 38
Permutation and Combination

119292 The last digit of \(583 !+7^{291}\) is

1 1
2 2
3 0
4 3
Permutation and Combination

119315 If \((n+2) !=2550 \times n\) !, then the value of \(n\) is equal to

1 8
2 49
3 50
4 51
Permutation and Combination

119247 If \({ }^{2 n+3} C_{2 n}-{ }^{2 n+2} C_{2 n-1}=15(2 n+1)\), then \(n=\)

1 13
2 14
3 27
4 15
Permutation and Combination

119270 Eight different letters of an alphabet are given. Words of four letters from these are formed. The number of such words with at least one letter repeated is

1 \(\left(\begin{array}{l}8 \\ 4\end{array}\right)-{ }^8 \mathrm{P}_4\)
2 \(8^4+\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
3 \(8^4-{ }^8 \mathrm{P}_4\)
4 \(8^4-\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
Permutation and Combination

119291 The number of positive divisors of 4896 is

1 32
2 34
3 36
4 38
Permutation and Combination

119292 The last digit of \(583 !+7^{291}\) is

1 1
2 2
3 0
4 3
Permutation and Combination

119315 If \((n+2) !=2550 \times n\) !, then the value of \(n\) is equal to

1 8
2 49
3 50
4 51
Permutation and Combination

119247 If \({ }^{2 n+3} C_{2 n}-{ }^{2 n+2} C_{2 n-1}=15(2 n+1)\), then \(n=\)

1 13
2 14
3 27
4 15
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Permutation and Combination

119270 Eight different letters of an alphabet are given. Words of four letters from these are formed. The number of such words with at least one letter repeated is

1 \(\left(\begin{array}{l}8 \\ 4\end{array}\right)-{ }^8 \mathrm{P}_4\)
2 \(8^4+\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
3 \(8^4-{ }^8 \mathrm{P}_4\)
4 \(8^4-\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
Permutation and Combination

119291 The number of positive divisors of 4896 is

1 32
2 34
3 36
4 38
Permutation and Combination

119292 The last digit of \(583 !+7^{291}\) is

1 1
2 2
3 0
4 3
Permutation and Combination

119315 If \((n+2) !=2550 \times n\) !, then the value of \(n\) is equal to

1 8
2 49
3 50
4 51
Permutation and Combination

119247 If \({ }^{2 n+3} C_{2 n}-{ }^{2 n+2} C_{2 n-1}=15(2 n+1)\), then \(n=\)

1 13
2 14
3 27
4 15
Permutation and Combination

119270 Eight different letters of an alphabet are given. Words of four letters from these are formed. The number of such words with at least one letter repeated is

1 \(\left(\begin{array}{l}8 \\ 4\end{array}\right)-{ }^8 \mathrm{P}_4\)
2 \(8^4+\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
3 \(8^4-{ }^8 \mathrm{P}_4\)
4 \(8^4-\left(\begin{array}{l}8 \\ 4\end{array}\right)\)
Permutation and Combination

119291 The number of positive divisors of 4896 is

1 32
2 34
3 36
4 38
Permutation and Combination

119292 The last digit of \(583 !+7^{291}\) is

1 1
2 2
3 0
4 3
Permutation and Combination

119315 If \((n+2) !=2550 \times n\) !, then the value of \(n\) is equal to

1 8
2 49
3 50
4 51
Permutation and Combination

119247 If \({ }^{2 n+3} C_{2 n}-{ }^{2 n+2} C_{2 n-1}=15(2 n+1)\), then \(n=\)

1 13
2 14
3 27
4 15