Tangent and Normal of Parabola
Parabola

120235 The normal chord at a point \(t\) on the parabola \(y^2=4 a x\) subtends a right angle at the vertex. Then, \(t^2\) is equal to

1 2
2 \(\sqrt{2}\)
3 4
4 None of these
Parabola

120236 If a line \(y=3 x+1\) cuts the parabola \(x^2-4 x-\) \(4 y+20=0\) at \(A\) and \(B\), then the tangent of the angle subtended by the line segment \(A B\) at origin is

1 \(\frac{8 \sqrt{3}}{205}\)
2 \(\frac{8 \sqrt{3}}{209}\)
3 \(\frac{8 \sqrt{3}}{215}\)
4 None of these
Parabola

120237 The equation of the common tangent to the parabola \(y^2=8 x\) and rectangular hyperbola \(x y\) \(=-1\) is

1 \(x-y+2=0\)
2 \(9 x-3 y+2=0\)
3 \(2 \mathrm{x}+\mathrm{y}+1=0\)
4 \(x+2 y-1=0\)
Parabola

120238 The line \(x+y=6\) is normal to the parabola \(y^2=8 x\) at the point

1 \((4,2)\)
2 \((2,4)\)
3 \((2,2)\)
4 \((3,3)\)
Parabola

120235 The normal chord at a point \(t\) on the parabola \(y^2=4 a x\) subtends a right angle at the vertex. Then, \(t^2\) is equal to

1 2
2 \(\sqrt{2}\)
3 4
4 None of these
Parabola

120236 If a line \(y=3 x+1\) cuts the parabola \(x^2-4 x-\) \(4 y+20=0\) at \(A\) and \(B\), then the tangent of the angle subtended by the line segment \(A B\) at origin is

1 \(\frac{8 \sqrt{3}}{205}\)
2 \(\frac{8 \sqrt{3}}{209}\)
3 \(\frac{8 \sqrt{3}}{215}\)
4 None of these
Parabola

120237 The equation of the common tangent to the parabola \(y^2=8 x\) and rectangular hyperbola \(x y\) \(=-1\) is

1 \(x-y+2=0\)
2 \(9 x-3 y+2=0\)
3 \(2 \mathrm{x}+\mathrm{y}+1=0\)
4 \(x+2 y-1=0\)
Parabola

120238 The line \(x+y=6\) is normal to the parabola \(y^2=8 x\) at the point

1 \((4,2)\)
2 \((2,4)\)
3 \((2,2)\)
4 \((3,3)\)
Parabola

120235 The normal chord at a point \(t\) on the parabola \(y^2=4 a x\) subtends a right angle at the vertex. Then, \(t^2\) is equal to

1 2
2 \(\sqrt{2}\)
3 4
4 None of these
Parabola

120236 If a line \(y=3 x+1\) cuts the parabola \(x^2-4 x-\) \(4 y+20=0\) at \(A\) and \(B\), then the tangent of the angle subtended by the line segment \(A B\) at origin is

1 \(\frac{8 \sqrt{3}}{205}\)
2 \(\frac{8 \sqrt{3}}{209}\)
3 \(\frac{8 \sqrt{3}}{215}\)
4 None of these
Parabola

120237 The equation of the common tangent to the parabola \(y^2=8 x\) and rectangular hyperbola \(x y\) \(=-1\) is

1 \(x-y+2=0\)
2 \(9 x-3 y+2=0\)
3 \(2 \mathrm{x}+\mathrm{y}+1=0\)
4 \(x+2 y-1=0\)
Parabola

120238 The line \(x+y=6\) is normal to the parabola \(y^2=8 x\) at the point

1 \((4,2)\)
2 \((2,4)\)
3 \((2,2)\)
4 \((3,3)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120235 The normal chord at a point \(t\) on the parabola \(y^2=4 a x\) subtends a right angle at the vertex. Then, \(t^2\) is equal to

1 2
2 \(\sqrt{2}\)
3 4
4 None of these
Parabola

120236 If a line \(y=3 x+1\) cuts the parabola \(x^2-4 x-\) \(4 y+20=0\) at \(A\) and \(B\), then the tangent of the angle subtended by the line segment \(A B\) at origin is

1 \(\frac{8 \sqrt{3}}{205}\)
2 \(\frac{8 \sqrt{3}}{209}\)
3 \(\frac{8 \sqrt{3}}{215}\)
4 None of these
Parabola

120237 The equation of the common tangent to the parabola \(y^2=8 x\) and rectangular hyperbola \(x y\) \(=-1\) is

1 \(x-y+2=0\)
2 \(9 x-3 y+2=0\)
3 \(2 \mathrm{x}+\mathrm{y}+1=0\)
4 \(x+2 y-1=0\)
Parabola

120238 The line \(x+y=6\) is normal to the parabola \(y^2=8 x\) at the point

1 \((4,2)\)
2 \((2,4)\)
3 \((2,2)\)
4 \((3,3)\)