Equation of Parabola with Given Focus and Directrix
Parabola

120986 Equation of the directrix of the conic \(x^2+4 y+\) \(4=0\) is

1 \(y=1\)
2 \(y=-1\)
3 \(y=0\)
4 \(x=0\)
5 \(x=1\)
Parabola

120987 If the vertex of the parabola \(y=x^2-16 x+k\) lies on \(x\)-axis, then the value of \(k\) is :

1 16
2 8
3 64
4 -64
5 -8
Parabola

120988 An equilateral triangle \(\mathrm{SAB}\) is inscribed in the parabola \(y^2=4 a x\) having its focus at \(S\). It chord \(A B\) lies towards the left of \(S\), then side length of this triangle is

1 \(2 \mathrm{a}(2-\sqrt{3})\)
2 \(4 \mathrm{a}(2-\sqrt{3})\)
3 \(\mathrm{a}(2-\sqrt{3})\)
4 \(8 \mathrm{a}(2-\sqrt{3})\)
Parabola

120931 The two ends of a latus rectum of a parabola are \((5,8)\) and \((-7,8)\) Then its focus is

1 \((-1,8)\)
2 \((-2,8)\)
3 \((-2,16)\)
4 \((-1,-8)\)
Parabola

120986 Equation of the directrix of the conic \(x^2+4 y+\) \(4=0\) is

1 \(y=1\)
2 \(y=-1\)
3 \(y=0\)
4 \(x=0\)
5 \(x=1\)
Parabola

120987 If the vertex of the parabola \(y=x^2-16 x+k\) lies on \(x\)-axis, then the value of \(k\) is :

1 16
2 8
3 64
4 -64
5 -8
Parabola

120988 An equilateral triangle \(\mathrm{SAB}\) is inscribed in the parabola \(y^2=4 a x\) having its focus at \(S\). It chord \(A B\) lies towards the left of \(S\), then side length of this triangle is

1 \(2 \mathrm{a}(2-\sqrt{3})\)
2 \(4 \mathrm{a}(2-\sqrt{3})\)
3 \(\mathrm{a}(2-\sqrt{3})\)
4 \(8 \mathrm{a}(2-\sqrt{3})\)
Parabola

120931 The two ends of a latus rectum of a parabola are \((5,8)\) and \((-7,8)\) Then its focus is

1 \((-1,8)\)
2 \((-2,8)\)
3 \((-2,16)\)
4 \((-1,-8)\)
NEET Test Series from KOTA - 10 Papers In MS WORD WhatsApp Here
Parabola

120986 Equation of the directrix of the conic \(x^2+4 y+\) \(4=0\) is

1 \(y=1\)
2 \(y=-1\)
3 \(y=0\)
4 \(x=0\)
5 \(x=1\)
Parabola

120987 If the vertex of the parabola \(y=x^2-16 x+k\) lies on \(x\)-axis, then the value of \(k\) is :

1 16
2 8
3 64
4 -64
5 -8
Parabola

120988 An equilateral triangle \(\mathrm{SAB}\) is inscribed in the parabola \(y^2=4 a x\) having its focus at \(S\). It chord \(A B\) lies towards the left of \(S\), then side length of this triangle is

1 \(2 \mathrm{a}(2-\sqrt{3})\)
2 \(4 \mathrm{a}(2-\sqrt{3})\)
3 \(\mathrm{a}(2-\sqrt{3})\)
4 \(8 \mathrm{a}(2-\sqrt{3})\)
Parabola

120931 The two ends of a latus rectum of a parabola are \((5,8)\) and \((-7,8)\) Then its focus is

1 \((-1,8)\)
2 \((-2,8)\)
3 \((-2,16)\)
4 \((-1,-8)\)
Parabola

120986 Equation of the directrix of the conic \(x^2+4 y+\) \(4=0\) is

1 \(y=1\)
2 \(y=-1\)
3 \(y=0\)
4 \(x=0\)
5 \(x=1\)
Parabola

120987 If the vertex of the parabola \(y=x^2-16 x+k\) lies on \(x\)-axis, then the value of \(k\) is :

1 16
2 8
3 64
4 -64
5 -8
Parabola

120988 An equilateral triangle \(\mathrm{SAB}\) is inscribed in the parabola \(y^2=4 a x\) having its focus at \(S\). It chord \(A B\) lies towards the left of \(S\), then side length of this triangle is

1 \(2 \mathrm{a}(2-\sqrt{3})\)
2 \(4 \mathrm{a}(2-\sqrt{3})\)
3 \(\mathrm{a}(2-\sqrt{3})\)
4 \(8 \mathrm{a}(2-\sqrt{3})\)
Parabola

120931 The two ends of a latus rectum of a parabola are \((5,8)\) and \((-7,8)\) Then its focus is

1 \((-1,8)\)
2 \((-2,8)\)
3 \((-2,16)\)
4 \((-1,-8)\)